
Session 7
Stateless Fuzzing

Security Summer School
July 14th 2014

ACS/Ixia/Hexcellents

1 / 13



What is fuzzing anyway?

Sofware testing technique (often automated)

Involves providing invalid, unexpected or random data as input to a
program

Used for discovering new software vulnerabilities

2 / 13



Fuzzing Phases

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

3 / 13



Fuzzing Phases

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

3 / 13



Fuzzing Phases

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

3 / 13



Fuzzing Phases

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

3 / 13



Fuzzing Phases

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

3 / 13



Fuzzing Phases

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

3 / 13



Target inputs

Command line parameters

Files (configuration/application specific files) that the application
parses

Network sockets

Stdin

Environment variables

In-Memory Fuzzing

4 / 13



Types of Fuzzers

Protocol Fuzzers (eg. Sulley, Peach, SPIKE, etc. )

File Format Fuzzers (eg. SPIKEFile, notSPIKEFile, FileFuzz)

CLI arguments fuzzers (eg. iFuzz)

Specialized fuzzers (eg. ActiveX fuzzers, RPC fuzzers, web fuzzers,
etc.)

5 / 13



Generating the data

Depending on how you derive the fuzzing data, you can have:

Mutation-based fuzzers where you take valid data and then modify
it

Generation-based fuzzers where you contruct the data from the
ground up based on its specific structure

When generating fuzzing data, we’re trying to pick interesting values for
the fields being fuzzed

Integers
Negative numbers (0xFFFFFFFF, 0x80000000, etc.)
Large numbers (0x7FFFFFFF, 0x20000000, etc.)
Small values such as 0-10
Header values identifying the length of header/data segments

ASCII
Large strings / empty strings
Strings with inaccurate length tags
Strings with accurate but long length tags
Strings with format specifiers

6 / 13



Stateless vs. Stateful Fuzzing

Depends on whether we need to get the application into a certain
state before we can commence fuzzing

Think of HTTP vs. SMTP/FTP

Protocol state machine

Stateful fuzzing is a bit more complicated to do

7 / 13



Fuzzing Frameworks

Generate the fuzzed data

Orchestrate running the program against the generated test data
and see whether it crashed

Automate collecting debugging and run information for the test
cases that crashed or caused the application to go into an abnormal
state

Track the progress and time needed to run the fuzz tests

Generate reports and automatically assess the exploitability of the
discovered vulnerability

8 / 13



Sulley Fuzzing Framework

9 / 13



Sulley

Fuzzer development and fuzz testing framework consisting of
multiple extensible components

Python based so it can basically run on any platform

Overall usage of Sulley breaks down to the following

Data Representation: First step in using any fuzzer. Run your target
and tickle some interfaces while snagging the packets. Break down
the protocol into indvidual requests and represent that as blocks in
Sulley.
Session: Link your developed requests together to form a session,
attach the various available Sulley monitoring agents (network,
debugger, etc.) and commence fuzzing.
Post Mortem: Review the generated data and monitored results.
Replay individual test cases.

10 / 13



Fuzzing with Sulley

When fuzzing with Sulley, we need to write a python script that defines
all required objects that Sulley needs in order to fuzz specific target:

Data Model: data model defines the properties of the network
protocol that we’re going to fuzz.

State Model: state model is used to define possible interactions
between different states of the fuzzed network protocol.

Target: target defines what we’re going to fuzz.

Agents: agents are special programs running on the target
computer, which do various things, amongst others are: monitoring
the fuzzed process for crashes, intercepting the relevant network
packets, restarting the crashed process, etc.

Monitoring Interface: monitoring interface allows us to easily see
the result of fuzzing process, how many of the test cases were
already sent, how many of them caused a crash, etc.

11 / 13



File Format Fuzzing

SPIKEfile

Linux generation-based file fuzzer based on SPIKE
Fuzzers may be defined for it with the same SPIKE script block
based notation as we’ve seen with Sulley.

notSPIKEfile

Linux mutation-based file fuzzer
Starting from a valid input file it will attempt and modify the file
byte by byte (or some other pattern) in order to produce test cases

Both of them support application orchestration and monitoring

12 / 13



Resources

1 Fuzzing.org: www.fuzzing.org/

2 Sulley: github.com/OpenRCE/sulley

3 Sulley User Manual: www.fuzzing.org/wp-content/SulleyManual.pdf

13 / 13

www.fuzzing.org/
github.com/OpenRCE/sulley
www.fuzzing.org/wp-content/SulleyManual.pdf

