
Session 0x0C
Fuzzing

Security Summer School

ACS/Ixia/Hexcellents

1 / 7



Fuzzing

Generate large number of possible inputs

Use heuristics in order to guide the execution

Run the target program and collect execution feedback

eg. libFuzzer(requires source code), afl(source code or binary)

2 / 7



Fuzzing

The main components of a fuzzing engine are shown below:

3 / 7



Flow Graph

The flow graph is the target program layout representing all the
paths that can be traversed during program execution
It consists of nodes, representing basic blocks, and edges,
representing whether or not there is a direct jump from a basic
block to another

4 / 7



Heuristics Based on Coverage

Basic block - set of instructions that doesn’t contain branches -
excepting the branch in and the branch out

Code coverage - the number of basic blocks exercised during target
executions in certain conditions (stdin, env, command line
parameters, network, disk, etc.)

Fuzzers run the target in different conditions in order to execute as
many basic blocks as possible

After each execution, if a new basic block was exercised, then the
current conditions are interesting

Only interesting inputs are mutated

5 / 7



Assisted Fuzzing

Fuzzers get stuck often

Branches can be simple (bytes are compared with precise values)
804852c: 0f b6 45 d8 movzx eax,BYTE PTR [ebp-0x28]

8048530: 3c 41 cmp al,0x41

8048532: 75 0a jne 804853e <run+0x56>

Or complex - string comparisons, simple encryption algorithms, etc.

Here is an example where 4 bytes are compared using string
functions
8048509: 6a 04 push 0x4

804850b: 68 10 86 04 08 push 0x8048610

8048510: 8d 45 d0 lea eax,[ebp-0x30]

8048513: 50 push eax

8048514: e8 97 fe ff ff call 80483b0 <strncmp@plt>

6 / 7



Symbolic Execution

One solution to generate input that can satisfy a complex
comparison is to use symbolic execution
Disadvantage: cannot be used on complex software. SE will explore
each path in the program, thus resulting in path explosion

7 / 7


