====== Refresher. Taming GDB ====== Although it is a powerful tool, gdb is pretty cumbersome to use by itself. Even simple tasks such as execution tracing are made difficult by the lack of "friendliness". To overcome this, we're going to use a wrapper over gdb that greatly enhances its default functionality. This tool is called "Python Exploit Development Assistance for GDB", in short: peda. Even though there are lots of goodies included in it we're going to go only over what we need right now. ====== Installation ====== You can download peda using: git clone https://github.com/longld/peda.git ~/peda To set it up add the following to your **~/.gdbinit** file and then run **gdb** as usual: # Source all settings from the peda dir source ~/peda/peda.py # These are other settings I have found useful # When inspecting large portions of code the scrollbar works better than 'less' set pagination off # Keep a history of all the commands typed. Search is possible using ctrl-r set history save on set history filename ~/.gdb_history set history size 32768 set history expansion on # By default peda clears the screen after most commands, displaying a single # context frame at a time and allowing you to access the previous/next frame # using Shift+PageUp/Shift+PageDown. However, that might not work in your # terminal, leaving you unable to access any older information. If that is the # case, uncomment the following line: # #pset opt clearscr off ====== Basic stuff ====== The most common actions done in gdb are: setting breakpoints, stepping through program execution and examining memory. The following are commands you need to know: * ''run [args]'' => restart the program with [args] as args * ''stepi'' (or simply ''si'') => execute the current instruction and go to the next one - if it's a call instruction go to that subroutine (step into) * ''nexti'' (or simply ''ni'') => execute the current instruction and go to the next one - if it's a call instruction execute the whole subroutine in the background (step over) * ''break'' (or simply ''b'') => set a permanent breakpoint on an address or function * ''info break'' => display all current breakpoints set * '' delete 2'' => delete the breakpoint with index 2 (from the list of current breakpoints) * ''continue'' (or simply ''c'') => continue execution after hitting a breakpoint (or receiving a signal) * ''hexdump [/NR]'' => dump NR lines of memory starting from . (by default NR is 1) * ''x /s '' => dump a **string** starting from (''/100s'' would dump 100 strings) * ''x /wx '' => dump a **dword** starting from (''/100wx'' would dump 100 dwords) In order to provide command line arguments to a program run under gdb we can use (assume the name of the program is ''test'' and the command line arguments are ''arg0 arg1 arg2''): gdb test ... # GDB banner is skipped gdb-peda$ run arg0 arg1 arg2 In order to redirect both ''stdin'' and ''stdout'' to two separate files, we can use (the name of the program is still ''test'' and thetwo files that we redirect to and from are ''inputfile'' and ''outputfile''): gdb test ... # GDB banner is skipped gdb-peda$ run < inputfile > outputfile Obviously, one could combine the two examples into one, meaning that command line arguments, standard input and standard output are all controlled from inside GDB. This is great for debugging your exploits in an automated way. gdb test ... # GDB banner is skipped gdb-peda$ run arg0 arg1 arg2 < inputfile > outputfile ===== Practice the basic stuff ===== Let's find out how to do these on a previous crackme from session 01.Remember that the point was that it implemented a custom ''my_strcmp'' function such that ltrace/strace did not work. We now redo that task using gdb-peda: First we start it and investigate what happens in ''main'' using ''pdis'' (the peda enhanced version of ''dis'' - disassemble) $ gdb ./crackme3 gdb-peda$ pdis main Dump of assembler code for function main: 0x080485a7 <+0>: push ebp 0x080485a8 <+1>: mov ebp,esp 0x080485aa <+3>: and esp,0xfffffff0 0x080485ad <+6>: sub esp,0x400 0x080485b3 <+12>: mov DWORD PTR [esp],0x804a02c 0x080485ba <+19>: call 0x804855a 0x080485bf <+24>: mov DWORD PTR [esp],0x80486e0 0x080485c6 <+31>: call 0x80483b0 0x080485cb <+36>: mov eax,ds:0x804a044 0x080485d0 <+41>: mov DWORD PTR [esp+0x8],eax 0x080485d4 <+45>: mov DWORD PTR [esp+0x4],0x3e8 0x080485dc <+53>: lea eax,[esp+0x18] 0x080485e0 <+57>: mov DWORD PTR [esp],eax 0x080485e3 <+60>: call 0x80483a0 0x080485e8 <+65>: test eax,eax 0x080485ea <+67>: jne 0x80485f8 0x080485ec <+69>: mov DWORD PTR [esp],0xffffffff 0x080485f3 <+76>: call 0x80483d0 0x080485f8 <+81>: lea eax,[esp+0x18] 0x080485fc <+85>: mov DWORD PTR [esp],eax 0x080485ff <+88>: call 0x80483e0 0x08048604 <+93>: sub eax,0x1 0x08048607 <+96>: mov BYTE PTR [esp+eax*1+0x18],0x0 0x0804860c <+101>: mov DWORD PTR [esp+0x4],0x804a02c 0x08048614 <+109>: lea eax,[esp+0x18] 0x08048618 <+113>: mov DWORD PTR [esp],eax 0x0804861b <+116>: call 0x80484fc 0x08048620 <+121>: test eax,eax 0x08048622 <+123>: jne 0x8048632 0x08048624 <+125>: mov DWORD PTR [esp],0x80486ea 0x0804862b <+132>: call 0x80483b0 0x08048630 <+137>: jmp 0x804863e 0x08048632 <+139>: mov DWORD PTR [esp],0x80486f3 0x08048639 <+146>: call 0x80483b0 0x0804863e <+151>: mov eax,0x0 0x08048643 <+156>: leave 0x08048644 <+157>: ret End of assembler dump. The interesting function is ''my_strcmp''. Next we set a breakpoint on it and start the program: gdb-peda$ break *my_strcmp Breakpoint 1 at 0x80484fc gdb-peda$ run Password: bla bla bla [----------------------------------registers-----------------------------------] EAX: 0xffffc9e8 ("bla bla bla") EBX: 0xf7f94e54 --> 0x1a6d5c ECX: 0x28 ('(') EDX: 0xc ('\x0c') ESI: 0x0 EDI: 0x0 EBP: 0xffffcdd8 --> 0x0 ESP: 0xffffc9cc --> 0x8048620 (: test eax,eax) EIP: 0x80484fc (: push ebp) EFLAGS: 0x202 (carry parity adjust zero sign trap INTERRUPT direction overflow) [-------------------------------------code-------------------------------------] 0x80484e3: mov ebp,esp 0x80484e5: sub esp,0x18 0x80484e8: mov DWORD PTR [esp],0x8049f08 0x80484ef: call eax 0x80484f1: leave 0x80484f2: jmp 0x8048470 0x80484f7: jmp 0x8048470 => 0x80484fc : push ebp 0x80484fd : mov ebp,esp 0x80484ff : sub esp,0x28 0x8048502 : mov eax,DWORD PTR [ebp+0x8] 0x8048505 : mov DWORD PTR [esp],eax 0x8048508 : call 0x80483e0 0x804850d : mov DWORD PTR [ebp-0x10],eax 0x8048510 : cmp DWORD PTR [ebp-0x10],0x0 0x8048514 : jne 0x804851d [------------------------------------stack-------------------------------------] 0000| 0xffffc9cc --> 0x8048620 (: test eax,eax) 0004| 0xffffc9d0 --> 0xffffc9e8 ("bla bla bla") 0008| 0xffffc9d4 --> 0x804a02c ("WXXHYIWE5yWic9vnmMGlA") 0012| 0xffffc9d8 --> 0xf7f95a80 --> 0xfbad2288 0016| 0xffffc9dc --> 0x4 0020| 0xffffc9e0 --> 0x4 0024| 0xffffc9e4 --> 0x7 0028| 0xffffc9e8 ("bla bla bla") 0032| 0xffffc9ec ("bla bla") 0036| 0xffffc9f0 --> 0x616c62 ('bla') 0040| 0xffffc9f4 --> 0x0 0044| 0xffffc9f8 --> 0x40 ('@') 0048| 0xffffc9fc --> 0x4 0052| 0xffffca00 --> 0x4 0056| 0xffffca04 --> 0x6474e550 0060| 0xffffca08 --> 0x170960 [------------------------------------------------------------------------------] Legend: code, data, rodata, value Breakpoint 1, 0x080484fc in my_strcmp () If you remember from the last session, the parameters passed to a function are on the stack. Because we have just arrived at this function using a ''call'' instruction, the return address is placed at the top of the stack (0x8048620). Immediately afterwards are the two parameters to the function: with "bla bla bla" being my input and "WXXHYIWE5yWic9vnmMGlA" the correct input (obviously, the two should match, therefore your job now is to input the value that the program expects). Note that peda automatically //telescopes// addresses (dereferences and interprets the data) Returning into main we see that there is something similar to an ''if'': 0x0804861b <+116>: call 0x80484fc 0x08048620 <+121>: test eax,eax 0x08048622 <+123>: jne 0x8048632 0x08048624 <+125>: mov DWORD PTR [esp],0x80486ea 0x0804862b <+132>: call 0x80483b0 0x08048630 <+137>: jmp 0x804863e 0x08048632 <+139>: mov DWORD PTR [esp],0x80486f3 0x08048639 <+146>: call 0x80483b0 If my_strcmp returns 0 then the Zero Flag is set and ''jne'' does not determine a jump. Afterwards, a parameter is pushed on the stack and ''puts'' is called. Let's dump the two strings: gdb-peda$ x/s 0x80486ea 0x80486ea: "Correct!" gdb-peda$ x/s 0x80486f3 0x80486f3: "Nope!" ====== Dynamic analysis shortcuts ====== In peda you have quick access to information that you would otherwise have to obtain using other tools as presented before: gdb-peda$ vmmap Start End Perm Name 0x08048000 0x08049000 r-xp /tmp/black/crackmes/crackme3 0x08049000 0x0804a000 r--p /tmp/black/crackmes/crackme3 0x0804a000 0x0804b000 rw-p /tmp/black/crackmes/crackme3 0xf7ded000 0xf7dee000 rw-p mapped 0xf7dee000 0xf7f93000 r-xp /lib32/libc-2.17.so 0xf7f93000 0xf7f95000 r--p /lib32/libc-2.17.so 0xf7f95000 0xf7f96000 rw-p /lib32/libc-2.17.so 0xf7f96000 0xf7f99000 rw-p mapped 0xf7fda000 0xf7fdb000 rw-p mapped 0xf7fdb000 0xf7fdc000 r-xp [vdso] 0xf7fdc000 0xf7ffc000 r-xp /lib32/ld-2.17.so 0xf7ffc000 0xf7ffd000 r--p /lib32/ld-2.17.so 0xf7ffd000 0xf7ffe000 rw-p /lib32/ld-2.17.so 0xfffdd000 0xffffe000 rw-p [stack] gdb-peda$ elfheader .interp = 0x8048174 .note.ABI-tag = 0x8048188 .hash = 0x80481a8 .gnu.hash = 0x80481e0 .dynsym = 0x8048204 .dynstr = 0x8048294 .gnu.version = 0x80482f6 .gnu.version_r = 0x8048308 .rel.dyn = 0x8048328 .rel.plt = 0x8048338 .init = 0x8048368 .plt = 0x8048390 .text = 0x8048400 .fini = 0x80486c4 .rodata = 0x80486d8 .eh_frame_hdr = 0x80486fc .eh_frame = 0x8048738 .init_array = 0x8049f00 .fini_array = 0x8049f04 .jcr = 0x8049f08 .dynamic = 0x8049f0c .got = 0x8049ffc .got.plt = 0x804a000 .data = 0x804a024 .bss = 0x804a044 gdb-peda$ elfsymbol Found 6 symbols fgets@plt = 0x80483a0 puts@plt = 0x80483b0 __gmon_start__@plt = 0x80483c0 exit@plt = 0x80483d0 strlen@plt = 0x80483e0 __libc_start_main@plt = 0x80483f0 You can also search for strings in the mapped regions: gdb-peda$ find "Correct" Searching for 'Correct' in: None ranges Found 2 results, display max 2 items: crackme3 : 0x80486ea ("Correct!") crackme3 : 0x80496ea ("Correct!") gdb-peda$ find "/bin/sh" Searching for '/bin/sh' in: None ranges Found 1 results, display max 1 items: libc : 0xf7f53be6 ("/bin/sh") ====== Tasks ====== * Download level01 from Smash the stack and solve it using peda. Break on ''*main'', step through the execution and figure out what it does and how to crack it. $ scp level1@io.netgarage.org:/levels/level01 . # Password is level1