
Session 0x0C
Return Oriented Programming (part 2)

Security Summer School

ACS/Ixia/Hexcellents

1 / 10

Recap

ROP is like a ransom note

We execute almost arbitrary code without writing any new code
(aka shellcode)

Requires much more work

2 / 10

Calling conventions

ROP is mainly about setting up registers, adjusting the stack and
calling functions

We need to know:

How GCC compiles function calls
How the kernel expects syscalls to be set up

3 / 10

32 bit functions

4 / 10

32 bit syscalls

long int syscall (long int __sysno, ...)

gdb-peda$ pdis syscall

Dump of assembler code for function syscall:

0x000e39e0 <+0>: push ebp

0x000e39e1 <+1>: push edi

0x000e39e2 <+2>: push esi

0x000e39e3 <+3>: push ebx

0x000e39e4 <+4>: mov ebp,DWORD PTR [esp+0x2c]

0x000e39e8 <+8>: mov edi,DWORD PTR [esp+0x28]

0x000e39ec <+12>: mov esi,DWORD PTR [esp+0x24]

0x000e39f0 <+16>: mov edx,DWORD PTR [esp+0x20]

0x000e39f4 <+20>: mov ecx,DWORD PTR [esp+0x1c]

0x000e39f8 <+24>: mov ebx,DWORD PTR [esp+0x18]

0x000e39fc <+28>: mov eax,DWORD PTR [esp+0x14]

0x000e3a00 <+32>: call DWORD PTR gs:0x10

5 / 10

64 bit functions

6 / 10

64 bit syscalls

long int syscall (long int __sysno, ...)

gdb-peda$ pdis syscall

Dump of assembler code for function syscall:

0x00000000000e4ac0 <+0>: mov rax,rdi

0x00000000000e4ac3 <+3>: mov rdi,rsi

0x00000000000e4ac6 <+6>: mov rsi,rdx

0x00000000000e4ac9 <+9>: mov rdx,rcx

0x00000000000e4acc <+12>: mov r10,r8

0x00000000000e4acf <+15>: mov r8,r9

0x00000000000e4ad2 <+18>: mov r9,QWORD PTR [rsp+0x8]

0x00000000000e4ad7 <+23>: syscall

7 / 10

Techniques in this session

Handling ASLR with a ROP-based information leak

Stack space fixing: when the initial overflow is not enough for the
entire payload

Hybrid exploits: using ROP to create a RWX page and then
executing shellcode in that region

Syscalls using ROP

8 / 10

Exploit automation

Writing exploits in bash is error-prone and only allows static
payloads

Because of ASLR static payloads are useless. Use Python!

We need something to facilitate I/O with the vulnerable binary:
either locally or remotely

9 / 10

Exploit automation

Writing exploits in bash is error-prone and only allows static
payloads

Because of ASLR static payloads are useless. Use Python!

We need something to facilitate I/O with the vulnerable binary:
either locally or remotely

9 / 10

Task 0 walkthrough

Pwntools demo time!

10 / 10

