
Session 3
From ELF to PID

Security Summer School
30th of June 2014

ACS/Ixia/Hexcellents

1 / 20

Outline

Elf Basics

Linking

Elf Types

Elf Structure

Relocations

Memory Mapping

Memory Layout

Detailed Layout

ASLR

2 / 20

ELF Basics - History

Created by SUN Microsystems and
introduced to UNIX in the late 1990s
ELF is published in the ABI specification
and becomes the standard for *NIX and
BSD

Common specification

ELF-32
ELF-64

ELF-ARM

3 / 20

ELF Basics – Binary building blocks

4 / 20

Linking – Static Linking

5/ 20

Linking – Dynamic Linking

4/ 20

ELF Structure – Tools of the trade

objdump – used for section aware dumping
and interpreting code

readelf – tool for humanly reading and
interpreting ELF files

ldd - list the shared object dependencies

7 / 20

ELF Structure – ELF Header

8 / 20

ELF Structure – Program Headers

9/ 20

ELF Structure – Section Table

10 / 20

ELF Structure – Symbol Table

11/ 20

Relocations

Provides a map to the static linker when merging multiple files

Provides a map to the dynamic linker for fixing references to
shared object subroutines

Provide the following information

Where the modification needs to be done
The symbol that needs the fixup

An algorithm for doing the fixup

 12/ 20

Relocations - GOT

The Global Offset Table is necessary because code in memory is
read-only

The .GOT section resides in the data segment that is read/write

The machine code that requires a symbol from a shared object
points to GOT

The dynamic linker fixes the GOT entry when the symbol is
required at run time

13/ 20

Relocations - PLT

The Procedure Linkage Table is required for calling subroutines
from shared objects

The machine code that requires a subroutine from a shared object
points to PLT

The PLT entry bounces of GOT in order to push the subroutine
name on to the stack, and then call the dynamic loader

After the first call to the subroutine the entry in GOT will point to the
absolute address of the subroutine

14/ 20

Relocations

15/ 20

Memory Mapping – Loader flow

1) Load the main binary

2) Check and load dependencies

3) Load the symbol resolution map

4) Fix data relocations (.GOT)

5) Fix function relocation (GOT.PLT)

6) Call library initializers (.init)

7) Start the program

16/ 20

Memory Mappings – /proc/PID/maps

17/ 20

Memory Layout

18/ 20

Detailed Layout

19/ 20

ASLR

20/ 20

