
A Survey of

Cryptanalytic Attacks on RSA

Filipe da Costa Boucinha

A Dissertation presented

in partial fulfilment of the

Requirements for the Degree of Master in

Mathematics and

Fundamental Applications

October 2011

Abstract

RSA was the first public key cryptosystem to be published and it is

one of the most widely used. One of the reasons for this is its simple

implementation, another one is the deep analysis it has been the subject

of.

We begin this work with a brief introduction of the mathematical

notions required for implementing RSA, along with a brief description of

the evolution of cryptography.

In chapter 2 we describe some of the most important methods for

primality checking and for integer factorization.

We start chapter 3 by listing some faulty uses of RSA, followed by

some attacks on RSA sessions using low public or private exponent and

recommendations on how to avoid them. This work can therefore be seen

as a guide for choosing appropriate generating primes and keys for RSA.

Though there were no new findings obtained with the experimental

results we got, we present them, along with the implementations of the

respective attacks, hoping that they will captivate the readers to under-

stand its implementation and motivate further improvements.

Keywords: RSA, cryptanalysis, primality, factorization

O RSA foi o primeiro criptosistema de chave pública a ser publicado

e é um dos mais usados hoje em dia. Uma das razões para isso é a sua

simples implementação, outra é a análise profunda a que já foi sujeito.

Começamos este trabalho com uma introdução das noções matemáticas

necessárias para a implementação do RSA, juntamente com uma descrição

de alguns dos mais importantes métodos de factorização e verificação de

primalidade.

Finalmente listamos algumas más utilizações do RSA, seguidas de al-

guns ataques a sessões de RSA que usem pequenos expoentes privados ou

públicos e algumas maneiras de os evitar. Este trabalho é portanto um

guia para a escolha apropriada dos primos geradores e da chave do RSA.

Embora não tivessem sido obtidos novos resultados com os resulta-

dos experimentais obtidos, apresentamo-los juntamente com as imple-

mentações dos ataques respectivos, na esperança de conseguir cativar o

leitor a perceber os ataques e a tentar melhorar os mesmos.

i

Palavras Chave: RSA, criptanálise, primalidade, factorização

ii

Acknowledgements

I am deeply thankful to my supervisor Professor Vilius Stakenas. Not only

for making me so interested in the RSA cryptosystem in particular and investi-

gation in general, but also for his extreme kindness, sensitivity and helpfulness.

I would like to sincerely thank to my supervisor Professor Carlos Caleiro for

his helpful remarks, suggestions and reflections about this work.

My family has been a great support since the beginning of my life, so I

would like to thank them most of all, since it is because of them that I stand

here today.

Finally, I would like to thank all my friends who helped me to endure this

task both in Vilnius and in Lisbon. I am extremely grateful to them and I hope

I have the opportunity to show it after a reasonable amount of time.

iii

Contents

1 Introduction 1

1.1 Cryptography . 1

1.2 Public Key Cryptography . 2

1.3 The RSA cryptosystem . 3

1.4 Objective . 4

1.5 Mathematical Basis . 5

1.5.1 Notation . 5

1.5.2 Time Complexity . 6

1.5.3 Modular Arithmetic . 7

1.5.4 Useful Algorithms and Results 10

1.5.5 Continued Fractions . 12

1.5.6 Results from Coppersmith 12

1.6 RSA Definition . 14

1.7 RSA Safety . 15

1.8 Variants of RSA . 18

1.8.1 CRT-RSA . 18

1.8.2 Multi-Prime RSA . 19

1.8.3 Common Prime RSA . 20

2 Primality Tests and Factorization Algorithms 21

2.1 Primality Tests . 21

2.1.1 Fermat’s Primality Test 21

2.1.2 Solovay-Strassen Test . 23

2.1.3 Miller-Rabin Primality Test 24

2.1.4 AKS Test . 26

2.2 Factoring Algorithms . 27

2.2.1 Fermat’s Factorization . 28

2.2.2 Pollard’s ρ Algorithm . 29

2.2.3 Elliptic Curve Method . 29

2.2.4 General Number Field Sieve 31

2.3 Overview of the Different Methods 31

iv

3 Cryptanalysis of RSA 33

3.1 Kind of Attacks . 33

3.2 Some Misuses of RSA . 33

3.2.1 Common Modulus Attack 33

3.2.2 Hastad’s Broadcast Attack 36

3.2.3 Cycling Attack . 39

3.3 Recovering Plain texts Encrypted With Small Public Exponent . 40

3.3.1 Stereotyped Message Attack 41

3.3.2 Related Message Attack 43

3.3.3 Random Padding Attack 44

3.3.4 Leaking Information . 45

3.4 Factoring the modulus of RSA with Small Private Exponent d . 46

3.4.1 Wiener’s Continuous Fractions Attack 47

3.4.2 Improving Wiener’s Attack 48

4 Conclusions 51

5 Bibliography 52

A Implementations of the attacks from section 3.2 56

A.1 Common Modulus Attack . 56

A.2 DeLaurentis Attack . 57

A.3 Hastad’s Common Plaintext Attack 57

A.4 Related Plaintext Attack . 59

B Implementations of the attacks from section 3.3 62

B.1 Stereotyped Message Attack . 62

B.2 Related Message Attack . 63

C Implementation of Wiener’s attack 64

v

List of Tables

1 Notation . 5

2 Common Modulus Attack’s Experimental Results 34

3 DeLaurentis Attack’s Experimental Results 36

4 Common Plain text Attack’s Experimental Results 37

5 Related Plain text Attack’s Experimental Results 38

6 Cycling Attack’s Experimental Results 39

7 Stereotyped Message Attack’s Experimental Results 42

8 Wiener’s Attack’s Experimental Results 48

vi

1 Introduction

1.1 Cryptography

Cryptography is a science practised for over four thousand years. It regards,

in a rather simple way, the finding and improvement of methods for sending

messages between two chosen parts without risk that an unauthorized third

party can understand the sent messages.

While in the beginning this process was achieved by sending the messages

personally, i.e., from mouth to hear, with the increasing of the communca-

tions’ distance this has become impossible. So cryptographers started devel-

oping methods of sending messages from a sender, Alice, to a receiver, Bob,

without a malicious eavesdropper, Marvin, being able to understand the mes-

sages unless he knows exactly how they were encrypted. Such a method is called

a cryptosystem. Its mathematical description is given below:

Definition 1. Cryptosystem is a tuple < M,C,K, e, d > where:

M is the set of plaintext messages

C is the set of cypher text messages

K is the set of keys

e is the encryption function, e : M ×K → C such that e(m|k) = c

d is the decryption function, d : C ×K →M such that d(e(m|k)|k) = m

To send a plaintext m, Alice encrypts it with an a-priori defined key k, obtaining

the cypher text c = e(m|k), which she sends to the Bob, who decrypts it using

the same key k obtaining m = d(e(m|k)|k).

The key k should be known only by Alice and Bob, otherwise Marvin could

decrypt c just by knowing the decryption function. For this reason, this kind of

cryptosystems are called Private Key Cryptosystems or Symmetric Key

Cryptosystems, as the same key is used for encryption and decryption.

Throughout the years, numerous private key cryptosystems were created,

with ever increasing complexity. Eventually, they were considered insufficient.

What made them insufficient was the requirement that the secret key had to be

known both to Alice and Bob. This means that before exchanging the encrypted

1

messages, Alice and Bob needed a secure channel (that is, a channel to send

messages without the risk of Marvin intercepting any message) to exchange the

secret key. But suppose now that Alice and Bob never met, will never have

the chance to meet, and have at their disposition only an insecure channel to

exchange messages. Can they exchange encrypted messages between them, with

Marvin knowing all these cypher texts but without being able to decrypt them?

Until we got to 1976, this question seemed to have no answer. It was then

that Diffie and Hellman, predicting a coming revolution in cryptography[13],

proposed a new concept of cryptosystem which would lead to the creation of

RSA.

1.2 Public Key Cryptography

Public key cryptography consists in cryptosystems where there is no need for a

secure channel to exchange any prior information, like the secret key used by

private key cryptosystems. A common analogy to explain the concept of public

key cryptography is that of a simple mailbox. Everyone can put a letter in

Alice’s mailbox but only Alice, who has the key for her mailbox, can open it

and read her letters. The same is true for Bob and his mailbox. In a technical

way, this can be described as follows: Alice creates a pair of public and private

keys. Then she reveals her public key, allowing anyone to encrypt messages with

this key and send them to her. When receiving them, she decrypts them using

her private key. To clear any doubts, should Bob wish to receive encrypted

messages he should also create a pair of public/private keys and follow Alice’s

procedure.

This way, there is no need for a safe channel to agree on a key, as there

are no common keys which need to be changed between the several users. The

conditions such a cryptosystem should satisfy, which were initially proposed by

Diffie and Hellman in 1976, are presented below:

2

Definition 2. [Diffie-Hellman concept of public key cryptosystem] A

cryptosystem where the key consists of a pair of public/private keys, where the

encryption function uses the public key and the decryption function uses the

private key, such that:

it should be easy to create pairs of public/private keys

it should be easy do encrypt messages knowing the public key

it should be easy do decrypt messages knowing the private key

it should be hard to compute the private key from the public key

For a public key cryptosystem to be safe, it should be hard to invert the

encryption function without knowing the private key, and it should be hard

to deduce the private key from the public key alone. This kind of functions,

which are easy to compute but difficult to invert without knowing some extra

parameters are called trapdoor one-way functions.

Regarding cryptosystems used nowadays this inversion is not impossible:

rather it is extremely time consuming, making it useless for Marvin to try it

when the information being transmitted is only relevant for a short period of

time.

1.3 The RSA cryptosystem

The RSA cryptosystem is the first ever published public key cryptosystem, de-

veloped by Rivest, Shamir and Adleman, first presented in their 1978 article[38],

and based on the Diffie-Hellman proposal. Its implementation depends on

an a priori choice of two large prime numbers p and q, that are multiplied

to obtain the RSA modulus N = pq and a subsequent choice of a public and a

private integer parameters, e and d, satisfying ed = 1 + k(p− 1)(q− 1) for some

integer k. These two computations are actually a trapdoor one way function of

RSA: while it is easy to compute N = pq, we will show that it is hard to factor

it. As for the equation which allows us to define the exponents, it will be shown

that it is hard to deduce d from e and N without knowing p and q.

Since its first description by the three computer scientists in 1976, RSA has

been thoroughly analysed and many attacks against it have been found. These

attacks, which aim to recover an encrypted message or to deduce the private

3

key, have lead to restrictions over the choice of the four parameters mentioned

above and to limitations to the use of RSA. However, the set of these attacks has

not led to contradictory restrictions on the parameters, so the system has not

been proven to be unsafe. It is possible, so far, to choose the right parameters

so that all the known attacks become infeasible. In fact, the deep knowledge

we have about its weaknesses makes it more reliable, since less surprises are

expected than they were 30 years ago.

Since it has not been proven unsafe and it is not generally believed that it

will be so, RSA is presently the most used public-key cryptosystem in the world.

For this reason, its safe implementation is a matter of extreme importance. As

this depends mostly on the choice of the four parameters mentioned above,

every survey and new result about this topic will lead to a greater safety on

the transmission of information online, preventing cyber crime and providing

greater confidentiality to internet users.

1.4 Objective

The reliability of any cryptosystem relies mainly on how much it has been

analysed. RSA has been the subject of numerous analysis and that is one of its

strengths: no devastating attack has been found yet.

This work results from an analysis on several known mathematical attacks

on the RSA cryptosystem and their respective complexity. The objective is

that someone who wishes to implement RSA has a brief and clear summary of

the main precautions to have especially when it comes to choosing the gener-

ating primes and the encryption/decryption exponents. Besides the theoretical

complexity of the attacks we present the mathematical basis for the results

presented, experimental results and the implementation of some of the attacks,

with the aim of motivating people to improve the known attacks and to discover

new ones.

4

1.5 Mathematical Basis

In this section we start by presenting definitions for some of the symbols used

throughout the work. Then we present the definitions necessary to understand

what is the efficiency of an algorithm. Next we introduce the reader to modular

arithmetic, the basis of RSA, along with some useful theorems and algorithms.

Finally we present some advanced results used in the attacks against RSA with

low exponents.

1.5.1 Notation

We will use the following symbols whenever a, b,N are positive integers, p a

prime number, m = pα1
1 pα2

2 ...pαnn is an odd integer with prime factors p1, ..., pn

and (ab) is referred to as the Legendre symbol.

Table 1: Notation

Symbol Definition

(a,b) greatest common divisor between a and b

lcm(a,b) least common multiple of a and b

φ(N) number of positive integers smaller than and co-

prime to N

λ(N) smallest positive integer m such that

am ∼= 1 (mod N) ∀a ∈ ZN : (a,N) = 1[
a
p

]

0 , if p|a
1 , if a is a quadratic residue modulo p

−1 , if a is a quadratic nonresidue modulo p

(am) = [ap1]α1 [ap2]α2 ...[apn]αn

5

1.5.2 Time Complexity

In cryptography, rather than the value of an integer, it is common to work with

its size in bits. Most of the algorithms presented in this work will depend on

the size of integers, so it is convenient to present firstly the following definition:

Definition 3. The size of N is the number of bits it takes to represent N in

base 2, namely log2(N)

Throughout the rest of this work, when referring to the size of a number,

log(N) should be considered log2(N). To describe an algorithm’s efficiency we

usually relate its running time to some class of functions, for which we use the

following notation:

Definition 4. Big-O notation: Given two functions f and g, we say that

f(n) ∈ O(g(n)) iff:

∃ constants c, n0 > 0 : ∀n ≥ n0 we have 0 ≤ f(n) ≤ cg(n) (1)

This means that, for sufficiently large values of n, the function f does not

exceed g.

The efficiency of the algorithms will be described in terms of the number of

basic operations it executes in function of the input given.

Definition 5. The running time of an algorithm A, TA(n) is the number

of elementary instructions it executes when the input data is n. Occasionally,

the running time can depend on more than one parameter. When the situation

will be clear, we will simply say that the running time of an algorithm A

is O(f), meaning that TA(n) ∈ O(f(n)).

It is obvious that each function does not belong to a single class of complex-

ity.For example, if T (n) ∈ O(f(n)), then obviously T (n) ∈ O(2f(n)). For this

reason, when saying that T (n) ∈ O(f(n)) we mean that f is the smallest known

function that satisfies this, unless otherwise stated.

Here are some simple cases for the complexity of an algorithm A, TA(n):

1. TA(n) is O(log(n)α) means that the running time of A is polynomial in

the size of its input.

2. TA(n) is O(βlog(n)) means that the running time of A is exponential in

the size of its input.

6

The first case refers to algorithms which we say run in time polynomial in

log(N). Such an algorithm is called efficient as its complexity function grows

in a rather controlled way. In opposition, algorithms belonging to the second

case are called inefficient: they quickly become infeasible by any computer or

even network of computers.

When referring to problems, we will call them hard if there is no known

algorithm running in polynomial time that solves it. In opposition, a problem

which can be solved for any input with an algorithm running in polynomial time

is said to be an easy problem.

1.5.3 Modular Arithmetic

Modular Arithmetic is a fundamental basis for cryptography in general and for

RSA in particular. For this reason we present a set of definitions and results

which will enable the reader to fully understand the operations behind RSA. We

will also present some of the most used algorithms within the RSA operations.

We start with the congruence relation:

Definition 6. Let N be a positive integer. We say that two integers a and

b are congruent modulo N if there exists an integer k such that a− b = kN .

We represent this relation with the following notation:

a ∼= b (mod N) (2)

It should be noted that this is an equivalence relation. After choosing the

modulus N , we get a partition of the integers into N different classes since every

integer a must be congruent modulo N to an integer in the set {0, 1, ..., N − 1}.
When the modulus N is implicit, we define [a] = {b ∈ Z : a ∼= b (mod N)},
called the equivalence class of a. We introduce two operations with these equiv-

alence classes, simple extensions of the usual addition and multiplication:

Definition 7. (Modular Operations): Given two classes of equivalence [x]

and [y] defined modulo N , we define the operations:

addition: [x] + [y] = [x+ y]

multiplication: [x][y] = [xy]

Throughout the text we will stop referring to the equivalence class [x] as [x]

and instead write simply x. The modulus regarding which the equivalence class

is defined will also not be written, rather it will be explicit from its context.

7

Definition 8. Given an integer N > 0, the modular ring ZN is the set:

ZN = {[0], [1], ..., [N − 1]} (3)

(which will also be defined as ZN = {0, 1, ..., N − 1})
along with the modular operations defined above. The division operation is

an extension of the multiplication operation: to divide the equivalence class x

by the equivalence class y, we multiply x by the inverse of y (mod N), according

to the next definition.

In the ring ZN we can easily define inverses, which will be necessary to create

RSA keys:

Definition 9. Let a be an element of the modular ring ZN . The inverse of

a modulo N is the integer x satisfying:

ax ∼= 1 (mod N) (4)

which we will refer to as a−1 (mod N).

It is important to note that a−1 (mod N) exists if and only if (a,N) = 1.

When this is the case, the Extended Euclidean Algorithm (explained in the next

section) will provide us with the values x, y such that ax + yN = 1. From the

last equation we get:

ax ∼= 1 (mod N)⇔ ax− 1 = kN ⇔ ax− kN = 1 (5)

We know a and N so x, the inverse of a, is given by the Extended Euclidean

Algorithm (along with the value of k , which can be discarded). If (a,N) 6= 1

then there are no integer solutions x, k for this equation, and therefore there is

no inverse of a modulo N . However, if given a modulus N and an integer a,

we find out that a does not have an inverse modulo N , then we can compute a

factor of N by simply computing (a,N).

8

Another very important procedure for RSA regarding congruences is Mod-

ular Exponentiation. Given integers b, e,N , suppose we wish to calculate the

integer c satisfying:

c ∼= be (mod N) (6)

A straightforward method is to simply calculate be and then its remainder when

divided by N . This algorithm’s complexity is O(e) so it is infeasible for large

values of e. An alternative method, more efficient, is described below:

Algorithm 1. (Exponentiation by repeated squaring and multiplica-

tion). Given integers b, e,N , to compute the modular exponentiation

c ∼= be (mod N) we proceed as follows:

1. write e in its binary representation: (em−1, em−2, ..., e1, e0)2 such that

e =
∑i=m−1
i=0 ei2

i.

2. set c = 1.

3. from i = m− 1 to i = 0:

1. c = c2 (mod N).

2. If ei = 1, then c = cb (mod N).

4. return c.

The complexity of this algorithm is O(m) = O(log(e)). The operations

in step 3 can be efficiently done implementing a technique called Montgomery

Reduction[34].

We now introduce one definition used in the surprisingly efficient determin-

istic primality checking algorithm presented in Chapter 2.

Definition 10. Given an integer a and an integer N such that (a,N) = 1, the

multiplicative order of a modulo N , denoted oN (a), is the smallest positive

integer k such that

ak ∼= 1 (mod N) (7)

And a definition used in the application of the Solovay-Strassen primality

test.

Definition 11. Given an integer q and an integer n, we say that q is a

quadratic residue modulo n if there exists an integer x such that:

x2 ∼= q (mod n) (8)

9

If we want to solve a system of linear modular equations there is one efficient

theorem which provides the correct answer quickly:

Theorem 1. (Chinese Remainder Theorem): Let a1, ..., .an be n integers

and p1, ..., pn be relatively prime positive integers. Set P =
∏n
i=1 pi and, for

i = 1, ..., n define yi such that:

yi
P

pi
∼= 1 (mod pi) (9)

Then, one solution of the system
x ∼= a1 (mod p1)

x ∼= a2 (mod p2)
...

x ∼= an (mod pn)

is given by:

x0 =

n∑
i=1

aiyi
P

pi
(10)

Any other integer solution, x, of the system of congruences satisfies:

x ∼= x0 (mod P) (11)

1.5.4 Useful Algorithms and Results

We now include some useful definitions and results used in the proofs of the

attacks presented in chapter 3.

Definition 12. Let

p(x) = anx
n + an−1x

n−1 + ...+ a1x+ a0 (12)

be a polynomial of degree n with roots αi for i = 1, ..., n and

q(x) = bmx
m + bm−1x

m−1 + ...+ b1x+ b0 (13)

be a polynomial of degree m with roots βi for i = 1, ..., n.

The Resultant of p and q, denoted Resultant(p, q), is defined by

Resultant(p, q) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − βi) (14)

10

There is a lot of efficient ways to compute the Resultant of two polynomials.

One property of the resultant which will be useful for an attack in Chapter 3 is

that its application allows for the elimination of one variable from a system of

two polynomial equations[45].

To calculate (a, b) we can use the Extended Euclidean Algorithm, which

runs in time linear in the size of a and b and outputs also integers x, y such that

xa+ yb = (a, b). We present it now:

Algorithm 2. (Extended Euclidean Algorithm): Given two integers a > b,

in step k = 0 we set r−2 = a, r−1 = b, x0 = y0 = 0, x1 = y1 = 1 and

compute r0 : r−2 = q1 ∗ r−1 + r0, where q1 = b r−2

r−1
c. In step k = i, we

compute ri : ri−2 = qi ∗ ri−1 + ri, where qi = b ri−2

ri−1
c. Then we compute

xi = xi−2 − qi−1xi−1 and yi = yi−2 − qi−1yi−1 if qi−1 is defined.

The algorithm stops at step k = l if rl = 0 and outputs (a, b) = rl−1 and

also xl−2 and yl−2 which satisfy xl−2a+ yl−2b = (a, b).

Some properties of Euler’s Totient function, φ(N), and Carmichael’s

Lambda Function, λ(N), are particularly relevant for RSA analysis:

Theorem 2. If p, q are two different prime integers and N = pq we have:

1. φ(p) = p− 1

2. φ(N) = φ(pq) = φ(p)φ(q) = (p− 1)(q − 1)

3. λ(N) = lcm(p− 1, q − 1) = (p−1)(q−1)
(p−1,q−1) = φ(N)

(p−1,q−1)

We are now in position to present Euler’s Theorem.

Theorem 3. (Euler’s Theorem): If a and N are co-prime positive integers

then:

aφ(N) ∼= 1 (mod N) (15)

Proof. Let m1,m2, ...,mφ(N) be the positive integers co-prime to and less than

N . These numbers are all distinct modulo N and a is co-prime to N , so each

of the integers am1, am2, ..., amφ(N) is congruent to one of m1,m2, ...,mφ(N).

Because congruences preserve multiplicity, we have:

am1am2...amφ(N)
∼= m1m2...mφ(N) (mod N)⇔ (16)

m1m2...mφ(N)a
φ(N) ∼= m1m2...mφ(N) (mod N) (17)

Diving both sides by m1m2...mφ(N) we get the equality.

11

1.5.5 Continued Fractions

The continued fraction expansion of a real number x is its representation as the

tuple [a0; a1, ..., an, · · ·], such that the following equality is satisfied:

x = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an +
1

. . .

with the coefficient a0 being any integer and the coefficients a1, · · · , an, · · · pos-

itive integers. If x = p
q is a rational number then the number of coefficients in

its continued fraction expansion is finite, namely n = log(q). This coefficients

are the quotients computed by the Euclidean Algorithm applied to p and q.

The value ci = [a0; a1 · · · ai, for i = 0, ..., n, called the i-th convergent of

x, can be seen as an approximation of the value of x = [a0; a1, · · · , an].

We now present one result about continued fractions which is the basis for

Wiener’s attack, presented in Chapter 3.

Theorem 4. Let α ∈ Q and c, d ∈ Z such that:

|α− c

d
| < 1

2d2
.

Then c
d , as an irreducible fraction, is one of the convergents of the continued

fraction expansion of α.

1.5.6 Results from Coppersmith

In an article written in 1997[9], Coppersmith shows how to solve a modular

polynomial equation of degree k in a single variable x, as long as the solutions are

sufficiently small. The work of Coppersmith is based in the theory of Lattices,

namely in one algorithm developed by Lenstra, Lenstra and Lovasz, the LLL-

algorithm[26].

Theorem 5. Let p(x) be a monic integer polynomial of degree k and N a

positive integer of unknown factorization. We can find all integer solutions x0

of p(x0) ∼= 0 (mod N), such that |x0| < N
1
k , in time polynomial in log(N) and

k.

12

There is a generalized version of this result:

Theorem 6. Let N be an integer of unknown factorization which has a divisor

b ≥ Nβ, for 0 < β ≤ 1, and f(x) be a univariate monic polynomial of degree k.

Then we can find all solutions x0 of f(x) ∼= 0 (mod b), satisfying |x0| ≤ cN
β2

k ,

in time polynomial in log(N), c and the number of roots.

For these theorems to result in algorithms that run, in practice, in polynomial

time in the size of the input, we generally need to make two assumptions:

Conjecture 1. The Coppersmith’s method assumptions are:

1. The polynomials with a known small solution, either over Z or ZN , have

only one small solution.

2. The polynomials obtained from the LLL-reduced basis vectors are all al-

gebraically independent.

Though these assumptions usually hold, there is some reported cases where

they do not. Deeper knowledge regarding these two assumptions would greatly

improve the security of RSA.

13

1.6 RSA Definition

We are now in conditions to present the mathematical definition of RSA. We

will consider an RSA cryptosystem to be a tuple < N,M,C,K,E,D > where:

N = pq - the public modulus, the product of two different prime numbers

p, q.

M - the set of plain text. M = ZN .

C - the set of cypher texts. C = ZN .

K - is a tuple < p, q, e, d > where (d, φ(N)) = 1 and ed ∼= 1 (mod φ(N))

Kr =< e,N > is the public key

Kp =< p, q, d,N > is the private key

E - the encryption function: E : M → C, c = E(m|Kr) ∼= me (mod N)

D - the decryption function: D : C →M , m = E(c|Kp) ∼= cd (mod N)

e and d are called public and private exponent respectively. The expo-

nents satisfy the equation ed − 1 = kφ(N), which is therefore called the key

equation. It is also possible to define the exponents modulo λ(N). Since this

is a multiple of φ(N) the rest of the procedures described in this section are the

same.

The transmission of messages is as follows: suppose Alice wishes to send a

plain text message m ∈ M to Bob. Alice encrypts m using Bob’s public key

< e,N > and obtains

c ∼= me (mod N) (18)

Then, she sends c through an open channel to Bob. Now Bob gets c and decrypts

it using his private key < d,N >:

m′ ∼= cd ∼= med ∼= m (mod N) (19)

The last equality is a result of Euler’s Theorem:

med ∼= m1+kφ(N) ∼= m(mφ(N))k ∼= m1k ∼= m (mod N) (20)

The cryptosystem is easy to implement, which is one of the reasons why it

is so popular.

14

Algorithm 3. The implementation of a RSA session with a n bit modulus:

1. Generate two large different prime numbers p, q. This can be efficiently

done by generating random positive integers of size n
2 and checking their

primality (as described in chapter 2) until we have two primes[38].

2. Compute N = pq and φ(N) = (p− 1)(q − 1).

3. Choose e : (e, φ(N)) = 1 and compute d ∼= e−1 (mod φ(N)). To choose e

in such a conditions, all one has to do is to choose a prime e′ > max{p, q}
and reduce it modulo N [38]. To compute d we can then use the algorithm

described in Chapter 1 for computing modular inverses.

4. Make available for everyone the public key < e,N > and keep completely

in secret the private key < p, q, d,N >.

All of the parameters of the RSA will influence its security level and the

running time of the operations used by RSA. We usually require the size of N

to be large, usually 1024, 2048 or larger. Because we want that it will also be

hard to factor, it is recommended to have p and q as large as possible given the

size of the modulus. The usual procedure to ensure this is for a n-bits modulus

is to generate p and q as n
2 -bits primes, like described in step 1, which will be

called balanced primes as they have the same bit size.

In step 3 we can compute the exponents in reverse order: we usually chose

to compute first the exponent for which we need some restraints. These can

be for example e = 3 in order to reduce encryption costs or d > N
1
4 , which

prevents some attacks like shown in Section 3.

1.7 RSA Safety

The security of RSA depends on two of its trapdoor one way functions. The

encryption function is one of them, and the problem of inverting it is called the

RSA problem:

Definition 13. (The RSA Problem) Given a cypher text c = me (mod N)

encrypted using the public key < e,N >, compute the plain text m knowing

only < e,N >.

This problem is, mathematically, to compute e-th roots modulo N . As it is

an open question to know whether there is a polynomial time algorithm which

15

calculates these roots (though, as we saw, there is an algorithm that encrypts

the messages in polynomial time), it is assumed nowadays that it is hard to

calculate such roots when m ∈ ZN is randomly chosen and N is generated by

random large primes p, q.

Another trapdoor one way function in RSA is the modulus. Computing

N = pq is easy, but what about factoring N knowing only < e,N >? The

Problem of Factoring Large Integers is defined as follows:

Definition 14. (The Problem of Factoring Large Integers) Given a large

integer N , compute its prime factorization.

Again this is a trapdoor one way function: it is easy to compute the product

but difficult to compute the factors.

So lets look at the RSA Problem. If he wants to know m, Marvin can try

to find out d and then decrypt m. To compute d, Marvin must first know φ(N)

and for this he needs to factor N . If Marvin can factor N , he can compute

φ(N) and d = e−1 (mod N). This means that once we solve the problem of

factoring N , we can actually solve the RSA Problem for any m. So the RSA

problem is at most as difficult as the Problem of Factoring Large Integers. It

remains nowadays an open question to know whether both problems have the

same complexity.

As the RSA modulus N is a large number, factoring it is a rather hard task

given that its prime factors are generated randomly and balanced. The study

of factoring methods is an active field in Mathematics and, though it gained

special relevance more than 30 years ago with the appearance of RSA, it is still

unknown whether a polynomial time algorithm that solves this problem in a

classic computer exists. For this reason, it is assumed that if Marvin wishes to

factor an RSA modulus, in order to break the system, will need an amount of

time far larger than the usual duration of an RSA session.

So the safety of RSA relies deeply on the assumption that both the RSA

Problem and the Problem of Factoring Large Integers have no polynomial time

algorithm that solves it. But more relevant in practical terms is the fact that,

over 30 years of existence, no devastating attack on RSA has been publicized

which cannot be easily avoided as we will show in this work.

There is some flaws in the definition of RSA presented in the previous section.

In fact, it is not possible to safely implement RSA in such a way. We now present

some reasons why such an implementation does not provide appropriate security.

16

If Marvin knows φ(N), then he can solve the system of equations(
N = pq ∧ φ(N) = (p− 1)(q − 1)

)
for p and q and therefore find the factorization of N . It is easy to check that p

and q are the solutions of

x2 − (N − φ(N) + 1)x+N = 0 (21)

which can be solved efficiently. For this reason, the value of φ(N) should always

be kept secret.

Suppose Alice wishes to send to Bob a plain text m = kp where p is one of

the factors of N . She will encrypt it with Bob’s public key < e,N > obtain-

ing c ∼= me (mod N). If Marvin intercepts c, all he has to do is to compute

(c,N) = p to discover a factor of N and consequently break the system. So,

when choosing the plain texts, we cannot choose plain texts which are

not relatively prime to N .

RSA has the Homomorphic Property, that is, the encryption of the prod-

uct of two plain texts is equal to the product of the two encryptions. In RSA,

this is equivalent to the following statement: given two plain texts m1,m2 and

their cypher texts c1, c2, we have:

(m1m2)e ∼= c1c2 (mod N) (22)

which is verified for RSA. This paves the way for an attack against RSA. Suppose

m is encrypted as c ∼= me (mod N). Marvin, knowing c, chooses a random

x ∈ C and asks for the plain text of c0 ∼= cxe (mod N). Notice that this plain

text, m0, satisfies:

m0
∼= cd0

∼= (cxe)d ∼= cdxed ∼= mx (mod N) (23)

So all he has to do is compute the plain text m ∼= m0x
−1 (mod N).

Another fact about RSA is that it does not provide Semantical Security,

which happens in a cryptosystem when, knowing only the cypher text and the

public key, no information about the plain text can be recovered. This is clearly

17

not the case regarding RSA as we have defined it. Knowing two different plain

texts (say, ”YES” and ”NO”) and one cypher text, Marvin can easily find out to

what plain text the cypher text corresponds to by simply encrypting it with the

public key. This means that there is no deterministic public key cryptosystem

that is semantically secure.

Because of these properties, it becomes clear that, prior to encryption, a

random padding scheme should be applied to the plain text.

To sum up, there is some mandatory implementation changes we can state

at this moment:

1. The value φ(N) should be kept secret,

2. We cannot use plain texts m : (m,N) 6= 1,

3. A prior random padding scheme should always be applied to m before

encryption.

1.8 Variants of RSA

In this section we present some of the variants of RSA that have been created

over the years. Although not analysed in this work, we will present some of

their advantages comparing with the original RSA cryptosystem.

1.8.1 CRT-RSA

The encryption and decryption operations take time linear to the bit size of

the encryption and decryption exponents respectively [20]. One simple vari-

ant of RSA consists of, in the decryption process, using all the information

in the private key < p, q, d,N >, that is, to use also the factors p and q.

Knowing them, Bob can compute two partial decryptions mp
∼= ce (mod p)

and mq
∼= ce (mod q) and then combine the results using the Chinese Remain-

der Theorem to obtain the plain text m. This is an usual procedure because it

reduces the decryption costs by a factor of 4 [23]. In the literature it is usually

refered to as CRT-RSA.

18

1.8.2 Multi-Prime RSA

Multi-Prime RSA, like the name says, uses r < 1 distinct primes p1, p2, ..., pr to

form the modulus N = p1p2...pr. A Multi-Prime RSA instance using r-primes

is called r-prime RSA. For greater safety, it is usual to use balanced primes.

The proceedings like computing the exponents and the encryption method are

done in exactly the same way as the original RSA (that is, 2-RSA).

The greatest advantage of Multi-Prime RSA is that it allows for a faster

decryption process when Bob uses its knowledge of the factorization of N . When

receiving a cypher text c = me (mod N) he starts by computing the partial

decryptions xi ∼= c (mod pi) for i = 1, ..., r. Then he applies the CRT theorem

and recovers the plain text m. According to results by [19], the worst case cost

of decryption for a 3-prime RSA is 9
4 smaller than the worst case for RSA and

this results gets even better with 4-prime RSA, which presents a worst case cost

4 times smaller than that of the RSA.

One interesting topic regarding Multi-Prime RSA is the number of primes

one should use. It is obvious that the more primes we use the quicker the

decryption will be, but using too many will result in N having smaller factors.

The Number Field Sieve is the most efficient generic factorization method known

presently. Its running time depends solely on the size of N , the integer we want

to factor. On the other side, the Elliptic Curve Method is an extremely efficient

factorization algorithm for numbers N with a small prime factor, as it depends

on the size of N but also on the size of p, its smallest prime factor. When

we choose the size of the modulus, N , the runtime of the NFS is fixed. The

runtime of the Elliptic Curve Method will then be proportional to N but also

to p, the size of the smallest prime factor p. So, the idea that occurred to

Lenstra was to, for each size of a modulus N , calculate how many primes one

can use in r-prime RSA so that the runtime for both algorithms is the same for

standard RSA and for r-prime RSA. His work[28] resulted in recommendations

for the number of primes that we can use safely for r-prime RSA with modulus

of 1024,2048,4096 and 8192 bits. It should be noted that, besides taking in

account the available computational power at the time of publication of the

article, Lenstra also considered its probable evolution.

19

1.8.3 Common Prime RSA

For the Common Prime RSA the primes p and q are chosen so that (p− 1, q −
1) has a large prime factor and the encryption and decryption exponents are

defined as inverses modulo λ(N) instead of modulo φ(N). The advantage of this

variant is that it allows us to use smaller encrypting and decrypting exponents,

therefore reducing greatly the encryption and decryption operations’ costs, that

are seemingly resistant to the existing attacks on RSA. The downside is that

generating the primes p and q is more time consuming. For a detailed survey

about this variant of RSA we suggest reading [20].

20

2 Primality Tests and Factorization Algorithms

2.1 Primality Tests

Primality tests are algorithms that receive as input a positive integer N and

output some statement about its primality. In the best scenario, they guarantee

that either N is prime or that N is composite. Such tests are called determinis-

tic. Other tests either guarantee that N is composite, or that N is prime with

a certain probability. These tests are called probabilistic.

The most obvious primality test for an integer N , known for thousands

of years, consists in simple trial division by all integers up to
√
N , since any

composite number must have a divisor p that satisfies p ≤
√
N . If a factor

is found, we know that the number is composite, otherwise we prove that N

is prime. This deterministic algorithm has efficiency O(
√
N) and therefore is

extremely inefficient for large integers, say with 1024 bits like often used in RSA.

The probabilistic primality tests we will explain, most of them, simply aim

to prove that N is a composite number. If they do not prove it, then there is a

chance that they are prime. Repeating this test with different parameters will

lead to a bigger certainty that we are in the presence of a prime number.

2.1.1 Fermat’s Primality Test

The first primality test presented in this section derives from a theorem discov-

ered by Fermat in 1640. The proof is due to Leibniz, who found it 40 years

later. It states the following:

Theorem 7. For any prime number p and for any integer a such that 0 < a < p,

we have:

a(p−1) ≡ 1 (mod p) (24)

Proof. a, 2a, 3a, ..., (p − 1)a are all distinct mod p, therefore each of them is

congruent to one of 1, 2, 3, ..., p− 1. Because congruences preserve multiplicity,

we have:

a2a3a...(p− 1)a ∼= 1 ∗ 2 ∗ 3 ∗ ... ∗ (p− 1) (mod p)⇔ (25)

(p− 1)!ap−1 ∼= (p− 1)! (mod p) (26)

Diving both sides by (p− 1)! we get the equality.

21

So if we use contrapositive of this theorem, we get a test to check whether a

given number is composite:

Theorem 8. An odd positive integer N is composite if there exists a positive

integer a such that (a,N) = 1 and

aN−1 � 1 (mod N) (27)

There are composite numbers N that satisfy aN−1 ≡ 1 (mod N) for some a

in the conditions of the theorem. In this case, N is called a base-a pseudoprime.

We call it pseudoprime because, if we run Fermat’s Primality Test (FPT) for

N with such a base a, the test will not identify N as composite. One way to

round this problem is to simply run the test again with a different a : base-a

pseudoprime form quite different sets for different values of a, so we have the

hope of identifying N as a composite by simply trying out different values of

a. There is, however, one problem: there are composite numbers N which are

base-a pseudoprime for all a satisfying the conditions of the theorem. These

numbers are called Carmichael Numbers.

Definition 15. A composite number N is called a Carmichael Number if it

satisfies:

aN−1 ∼= 1 (mod N) (28)

for every positive integer a such that (a,N) = 1.

So a Carmichael number will never be identified as composite by FPT. Al-

though they are highly infrequent, Carmichael numbers are an infinite set so

they represent the biggest flaw of FPT. For this reason, FTP alone is not a

deterministic test.

22

2.1.2 Solovay-Strassen Test

This is the primality test suggested by the RSA team for generating the primes

p and q. It is based on the following theorem, due to Euler1:

Theorem 9. If p is an odd prime number, and b ∈ {1, ..., p − 1} such that

(b, p) = 1 then: (
b

p

)
∼= b

p−1
2 (mod p) (29)

So the idea of the test goes as follows: given an integer N whose primality

we want to check, we choose a random integer b such that 0 < b < N and check

(b,N). If the greatest common divisor is different from one, we found a factor

of N so N is composite. If it is 1, we verify the congruence: if it fails, then we

know that N is composite. If it is true, then there is a positive probability that

N is prime.

Like the FPT, this test only gives a reliable output when it proves composite-

ness because like with the FPT, there are composite numbers which will satisfy

the congruence for some bases. However, there are no composite numbers which

will satisfy the congruences for all the bases like the Carmichael Numbers do

for the FPT. In this way, the Solovay-Strassen test is a much better test than

FPT. The following result states this:

Theorem 10. Let N be an odd composite. Then there is

an element b ∈ ZN : (N, b) = 1 such that:(
b

N

)
� b

N−1
2 (mod N) (30)

So a composite number N can be a pseudoprime for some bases b, but it

will never be for all of them. Therefore, if we run the test using all integers up

to N as bases, we will be sure about N ’s primality. But do we really need to

use all of them? The next theorem tells us about the number of bases that, for

a given composite N , actually satisfy the congruence:

Theorem 11. Let N be an odd composite. Then at least half of the integers b

co-prime to N in {1, ..., N − 1} satisfy:(
b

N

)
� b

N−1
2 (mod N) (31)

1In this section (a
b
) refers to the Legendre Symbol

23

The consequence of this theorem is that for each test we apply to verify N ’s

primality, the probability that the test is wrong is less than 1
2 . This means that,

if we apply k tests with different random bases, and N passes all the tests, then

there is a chance of less than 1
2k

that N is composite.

2.1.3 Miller-Rabin Primality Test

The primality test presented in this section represents an evolution of FPT as

for it there is no equivalent for the Carmichael Numbers, that is, there is no

composite numbers which will pass the test for every different base. It is also

more reliable than the Solovay-Strassen test as we will see. Again there is some

composite numbers which fool the test. These are called the strong pseudoprimes

but these numbers are, as we will see, slightly more understandable. The test

is based on the following theorem, due to Miller:

Theorem 12. Given an odd prime N , written as N = 1 + 2sd, where d is odd,

then the sequence:

ad, a2d, a4d, ..., a2
s−1d, a2

sd (mod N) (32)

ends with 1. If

ad � 1 (mod N)

then the value preceding the first appearance of 1 is N − 1.

This condition, unfortunately, is also verified by some composite numbers,

for some base a.

Definition 16. A composite number N which satisfies the conditions described

by the theorem above, for an integer a, is said to be a strong pseudoprime

to the base a. If a number is either prime or strong pseudoprime, we call it

probably prime.

24

To apply the Miller-Rabin test, we need the following theorem:

Theorem 13. Given an integer N , let

N − 1 = 2sd

with d odd, and s > 0. Then N is probably prime if:

ad ∼= 1 (mod N) (33)

or

(ad)2
r ∼= (N − 1) (mod N) (34)

for some r less than s.

The running time of this probabilistic algorithm is O(k log3N), where k is

the number of times we run the test with different bases a. Therefore the Miller-

Rabin Primality test is a probabilistic primality test running in polynomial time.

Could we make this a deterministic primality test? The answer is yes, we can,

but we lose its efficiency.

Theorem 14. Let N > 1 be an odd composite integer. Then N passes the

Miller-Rabin Primality Test for at most N−1
4 bases a with 1 < a < N .

So here is yet another deterministic primality test: given that an integer N

passes k > N−1
4 tests, we are sure it is prime. However, the running time of this

algorithm is O(N4 log3(N)), still infeasible. There is one interesting result that

would permit this test to become both deterministic and efficient:

Theorem 15. If the Generalized Riemann Hypothesis (GRH) is true and N

passes the Miller-Rabin Primality Test for all bases a : 1 < a < 2(logN)2, then

N is prime.

So the proof of the GRH would lead to a deterministic version of the Miller-

Rabin Primality Test with running time O(log5N). Though this is only a

conjecture and therefore the test can be applied reliably only in its probabilistic

version, it is one of the most used primality tests within programs such as

Mathematica. The reason follows:

Theorem 16. The probability that a composite N passes the Miller-Rabin Pri-

mality Test for a random base a is 1
4 at most.

This means that, if we test for 100 different random bases, the probability

that all the tests are wrong is less than 1
1040 !

25

2.1.4 AKS Test

In 2004, a major breakthrough was achieved by a team of computer scientists

from the Indian Institute of Technology Kanpur. In an email sent worldwide,

Manindra Agrawal, Neeraj Kayal and Nitin Saxena (AKS) announced the world

they had found a deterministic polynomial time algorithm to verify an integer’s

primality.

Although the running time of the original algorithm was O (log
21
2 N)[29],

some recent efforts by Hendrik Lenstra and Carl Pomerance have created a

variation of the algorithm whose time complexity is O (log6N) [29] (which is

still slower than the Miller-Rabin Deterministic Test under the GRH).

The algorithm is based on the following result:

Theorem 17. Let a ∈ Z, N ∈ N, N ≥ 2 and (a,N) = 1. Then N is prime if

and only if:

(X + a)N = XN + a (mod N). (35)

This criteria, which is stronger than those presented before as it is both

necessary and sufficient for an integer to be prime, cannot be applied straight-

forwardly to check an integer’s primality because, for large N , there are too

many coefficients to calculate in the binomial. So the great development in

2004 was to, based on this criteria, create a deterministic algorithm for check-

ing primality. The original AKS algorithm is presented next:

Algorithm 4. The AKS algorithm. Given a positive integer N > 1:

1. Choose a ∈ Z and b > 1. If N = ab, then STOP and output COMPOS-

ITE.

2. Find the smallest r such that or(N) > log2(N).

3. If 1 < (a,N) < N , for some a ≤ r, output COMPOSITE.

4. If N ≤ r, output PRIME.

5. For a = 1, 2, ..., b
√
φ(r) log(N)c, do:

if ((X+a)N � XN +a (mod Xr−1, N))), output COMPOSITE. (36)

6. Output PRIME

26

It is straightforward that, when we input a prime number, the output will

always be prime: in steps 1 and 3 it cannot be considered composite, and in

step 6, because of the previous theorem, it will also not be considered composite

in any of the iterations of the cycle. So it will be considered prime, either in

step 5 or step 7. For a proof that a composite integer is never considered prime

one can read the original AKS article [29]. In [41] an implementation of the

algorithm is described.

There is one important conjecture that, if proven, would improve the effi-

ciency of this algorithm.

Conjecture 2. Let r be a prime that does not divide the positive integer N

and such that (X − 1)N ∼= XN − 1 (mod n,Xr − 1). Then

(N is prime
∨
N2 ∼= 1 (mod r)) (37)

If this conjecture could be proved, Lenstra and Pomerance’s variant of the

algorithm would have complexity O(log3 n)[41].

2.2 Factoring Algorithms

Like we said before, the security of RSA depends strongly on the difficulty of

factoring the modulus N . For this reason, special attention should be given to

the state of the art of integer factoring algorithms when implementing RSA.

There are published standards with recommendations 2 for the size of N and

the primes’ size depending mostly on how long we wish to keep the encrypted

data safe. This recommendations depend on some of the algorithms presented

in this section.

Factoring algorithms fall into two categories. One is the General Purpose

Factoring Algorithms which behave in approximately the same way for inte-

gers with the same size. The second category is that of the Special Purpose

Factoring Algorithms which behave better for integers N with certain spe-

cific characteristics, like the size of the smallest factor of N or the divisors of

(N − 1) or (N + 1). To attack an RSA session with balanced primes, a general

purpose algorithm is a priori more suitable, since the factors of N are randomly

chosen and of the same size.

2http://www.rsa.com/rsalabs/node.asp?id=2218

27

We will begin with an old method created by Fermat. This method is still

relevant today, though inefficient, because it was the basis for many stronger

algorithms that came later. Next we present Pollard’s ρ method, which, though

much more recent, is also an obsolete algorithm that laid the basis for some more

sophisticated algorithms that followed it. We finish by presenting the Elliptic

Curve Method and the General Number Field Sieve, two powerful factoring

algorithms, special and general purpose respectively.

2.2.1 Fermat’s Factorization

A very old idea to find a factor of an integer comes from Fermat. Suppose

N = pq is a product of two primes. If we find two integers x, y : N = x2 −
y2 and x− y > 1 then we have that N = (x− y)(x+ y), therefore we found the

two factors of N . So Fermat’s idea was to try several pairs of x, y until the first

equality is verified. He created an algorithm so as to choose these trials values.

We describe below the algorithm that, for an input N = pq, returns its factors:

Algorithm 5. Fermat’s Factorization Algorithm

Given a composite integer N ,

1. Set w = b
√
Nc and x = w

2. set y = b
√
x2 − nc

3. if n = x2 − y2, output x− y and x+ y

4. if x < n, replace x by x+ 1 and go to step 2.

Because we know that N is composite, the algorithm will always return its

prime factors. Looking at step 4, we realize that it will try all integers from
√
N

to N and because of this it is actually a very slow algorithm in the worst case

scenario, taking O(
√
N) steps, meaning it is even worst than trial division.

However, it should be noted that when applied to an RSA modulus N whose

two prime factors are close to each other, the method works quite fast. In the

extreme case when the factors are consecutive primes, a few seconds will be

enough to find them! So, when implementing RSA, one should be aware that

choosing consecutive primes will make the system vulnerable to one of the oldest

factorization methods!

28

2.2.2 Pollard’s ρ Algorithm

Pollard’s ρ Algorithm, described by Pollard in 1975[35], aims to find a small

factor p of a given integer N . Because of this focusing on a small factor of N ,

Pollard’s ρ is considered a special purpose factoring algorithm. We present a

simplified version the algorithm:

Algorithm 6. Pollard’s ρ Algorithm: Given a composite N :

1. Set a = 2, b = 2.

2. Define the modular polynomial f(x) = (x2 + c) (mod N) with c 6= 0,−2

3. For i=1,2,.., do:

(a) Compute a = f(a), b = f(f(b)).

(b) Compute d = (a− b,N).

(c) If 1 < d < N then return d with success.

(d) If d = N then terminate the algorithm with failure.

The function f is used to create two pseudo random sequences on ZN . The

reason for this is that, picking randomly two numbers x, y ∈ ZN , there is a

probability of 0.5 that after 1.777
√
N tries one will be congruent modulo N [37].

If they are and a 6= b, then (a− b,N) yields a factor of N .

The runtime of the algorithm is O(
√
p)[24], where p is N ’s smallest prime

factor. This means that against an RSA modulus N with balanced primes the

runtime of the algorithm is O(N
1
4), making it an inefficient method.

2.2.3 Elliptic Curve Method

In 1985, Hendrik Lenstra had a visionary idea. He thought of using Elliptic

Curves to factor integers. It is said that that Lenstra’s discovery was based on

Pollard’s (ρ− 1) method[44], a variant of Pollard’s ρ method described above.

The Elliptic Curve Method’s (ECM) running time depends on the smallest

factor p of the integer N being factored, making it particularly powerful for

finding ”medium-sized” factors of large integers. As we will show in the next

section, ECM is not used directly to factor RSA modulus, instead it is used as

an auxiliary step in the General Number Field Sieve algorithm [44] described in

the next section. The basis of the algorithm is the following result:

29

Theorem 18. Let N > 1 be an integer with (N, 6) = 1. Let E be an elliptic

curve modulo N , and let m and s be positive integers such that s divides m.

Suppose there is a point P ∈ E(Z/nZ) satisfying:

1. m · P = 0,

2. (m/q) · P is defined and different from 0, for each prime q dividing s.

Then]E(Fp) ∼= 0 (mod s) for every prime p dividing N and, if s > (N
1
4 + 1)2

then N is prime.

Using this result, Lenstra developed an algorithm to check whether a given

composite N is prime. We present a description of the algorithm taken from [1]

Algorithm 7. Lenstra’s Elliptic Curve Algorithm: Given an integer N :

1. Check that (6, N) = 1 so that N 6= mr for any r ≥ 2.

2. Choose integers A, x1, y1 such that 1 < A, x1, y1 < N .

3. Let E be the elliptic curve E : y2 = x3 +Ax+B where B = y21−x21−Ax1
and let P = (x1, y1) ∈ E.

4. Check that a = (4A3 + 27B2, N) = 1.

If a = N , go back to step 2 and choose a new A.

If 1 < a < N , then a is a factor of N .

5. Choose an integer k such that

k=LCM{1, 2, 3, ...,K} for some K ∈ N.

6. Compute kP =
(
ak
d2k
, bk
d3k

)
= 1P + 2P + 22P + 23P + ... + 2rP , for some

r ∈ N.

= P0 + P1 + P2 + ...+ Pr, for some r ∈ N.

=
∑r
ki=1 Pi.

7. Calculate D = (dk, N)

If 1 < D < N , then D is a non-trivial factor of N . If D = 1, return to

step 2 and choose a new A. If D = N , return to step 5 and decrease the

value of k.

The running time of this algorithm is E(N, p) = (log2N)2e
√
2(log p)

1
2 (log log p)

1
2

[20], where N is the integer to be factored and p its smallest prime factor.

30

2.2.4 General Number Field Sieve

The General Number Field Sieve (GNFS) is the fastest known general purpose

method for factoring large integers. For this reason, it is very suitable for

attacking RSA, as the factors p and q are balanced and so N does not have a

small factor, which makes the special purpose algorithms weaker.

For a pleasant reading about the contributions several people gave to the

development of this algorithm and a simple explanation of its procedure one

can read [36].

The GNFS is an extremely complex algorithm using results from several

fields of mathematics and for this reason it was not possible to present it in

our work. For an extensive explanation of the mathematical basis behind this

algorithm we suggest the reading of [6]. The running time of the GNFS for

factoring an integer N of size n is E(n) = exp(1.923n
1
3 log

2
3 n)[4][24].

As the state of the art in integer factoring, GNFS’s complexity has a double

importance: attacks on RSA which take more time than GNFS to factor the

number are not interesting anymore.

GNFS actually holds the record for the largest general integer ever factored,

the RSA-200, a number with 200 digits.

2.3 Overview of the Different Methods

Regarding the primality tests we described, clearly AKS is the most promising

one. For this reason, developments regarding this algorithm should be followed

closely. In what concerns the probabilistic tests described before, we think that

the Miller-Rabin test is the most efficient and reliable test. It is of special in-

terest that, if some advances will be made, it can become an extremely simple

polynomial time deterministic test. Finally, FTP was included solely for demon-

strative purposes and the Solovay-Strassen test was included because it was the

(now obsolete) primality test proposed in the original RSA article[38].

Regarding the factorization algorithms presented in this work, Fermat’s fac-

torization method does not present a serious menace for a RSA session unless

the primes chosen are (almost) consecutive. It is usually advised to use Pollard’s

ρ method to find factors of up to 30 bits [11] and then switch to the Elliptic

Curve Method if we are searching for factors larger than 30 bits. However, recent

developments described in [11] suggest that this number of bits should actually

31

be reduced. Regarding the GNFS, it should be noted that this is without doubt

the fastest known algorithm for factoring hard integers like the RSA modulus

N . One of the steps in the GNFS involves factoring some easier integers, that

is, integers which are expected to have at least one small factor. In this step of

GNFS, Lenstra’s ECM represents a fundamental tool.

32

3 Cryptanalysis of RSA

In this section we present the reader to some of the known attacks against RSA.

As we had a limited amount of time and a specific area of interest (mathematics),

it was not possible to include all the existing attacks against RSA. Rather, we

introduce attacks that explore uniquely the mathematical structure of RSA. For

some other kind of attacks on RSA we suggest the reading of [4][22][8][48].

3.1 Kind of Attacks

There are several types of attacks on RSA. The obvious one is to factor the

modulus N , which will create a total break of the system: the cryptanalyst

will be able to decrypt all messages. This can be achieved with one of the

methods presented in the last chapter. As the factoring methods described

above still do not run in polynomial time, an appropriate choice of the size of

N makes this factoring attack infeasible. There are published standards with

recommendations for the size of N that should be chosen, depending mostly on

the amount of time we wish to keep our data secret.

As we said before, the security of RSA relies mainly on the hardness of the

RSA Problem and the Problem of Factoring Large Integers. There is however,

like shown before, some implementation errors that can open breaches on RSA

security. We start this chapter by presenting some basic errors an inexperienced

user can commit when starting out with RSA and provide the reader the ways

on how to avoid these errors. In the second and third section of this chap-

ter, we illustrate the dangers of choosing small public and private exponents

respectively, recommending (presently) safe bounds for both these values.

3.2 Some Misuses of RSA

The attacks presented in this section were found a long time ago. They showed

some of the possible misuses of an RSA session.

3.2.1 Common Modulus Attack

The idea of the common modulus is that in a session of RSA with several users

there is a trusted entity which defines a modulus N and provides for each user

a pair of public and private valid RSA keys defined modulo φ(n), but not the

33

factorization of N . That is, each user Ui gets the public key < ei, N > and the

private key < di, N >. Simmons [42] showed that, without needing to factor the

modulus, if the same plain text is encrypted and sent to two users with co-prime

public exponents, any other user can decrypt the corresponding cypher text.

Theorem 19. Let N = pq be a RSA modulus and let < e1, N >,< e2, N >

be two public keys such that (e1, e2) = 1. Suppose a plain text m is encrypted

with both public keys. Knowing c1 = me1 (mod N), c2 = me2 (mod N) and the

public keys, we can compute m in time polynomial in log(N).

Proof. Knowing e1 and e2, we compute integers a1, a2 such that a1e1 +a2e2 = 1

using the Extended Euclidean Algorithm. Now we compute

ca11 c
a2
2
∼= ma1e1ma2e2 ∼= ma1e1+a2e2 ∼= m (mod N) (38)

Both the Extended Euclidean Algorithm and the final computation are done in

time polynomial in log(N), so the result follows.

So this means that anyone with access to the public keys and the cypher

texts would be able to intercept all the plain texts which would be encrypted

twice to different users.

We implemented this attack and tested it for various values of the size of N .

The results are compiled in Table 2.

Table 2: Common Modulus Attack’s Experimental Results

size of N (in bits) time to compute m (in seconds)

8 0.000021

16 0.000022

32 0.000048

64 0.000059

128 0.000188

256 0.000478

512 0.001517

1024 0.007022

2048 0.036865

4096 0.231358

34

In 1984 an even stronger attack against Common Modulus RSA was discov-

ered by DeLaurentis[12]. He proved that you don’t even need two encryptions

of a plain text to actually decrypt all the encrypted messages. The theorem

states that any user of the system can actually create a new private key which

will work with any other chosen public key. Here is the result:

Theorem 20. Let < e,N > be a valid RSA public key with corresponding

private key < d,N >. Let < e1, N > be the public key from another user such

that e1 6= e. Then a private key < d1, N > corresponding to < e1, N > can be

computed by:

d1 = e−11 (mod
ed− 1

(e1, ed− 1)
) (39)

in time polynomial in log(N).

Proof. We rewrite the key equation

ed ∼= 1 (mod φ(N))⇔ ed− 1 = kφ(N) (40)

and notice also that, as e1 is a public exponent it satisfies (e1, φ(N)) = 1 and

therefore (e1, kφ(N)) = k′ for some k′ that divides k. Now let k′′ = k
k′ . The

modulus in computation (39) can be written as:

ed− 1

(e1, ed− 1)
=
kφ(N)

k′
= k′′φ(N) (41)

So e1 and d1 satisfy:

d1 ∼= e−11 (mod k′′φ(N)) =⇒ d1e1 ∼= 1 (mod φ(N)) (42)

Therefore d1 is a valid private exponent corresponding to e1. All computations

can be done in time polynomial in log(N).

The implementation of this attack is presented in the appendix. The experi-

mental results obtained, again for different values of the size of n are represented

in Table 3.

The abnormal values for n = 32 and n = 64 are probably due to the fact that

the only relevant operation depending on the size of N timed was a modular

exponentiation.

There is one approach even more simple. Using his pair of private/public

keys, any user can compute a multiple of φ(N) through the key equation

ed − 1 = kφ(N). Then, by the results of Miller [33], he can use a probabilistic

35

Table 3: DeLaurentis Attack’s Experimental Results

size of N (in bits) time to compute d1 (seconds)

8 0.000019

16 0.000012

32 0.000031

64 0.000031

128 0.000030

256 0.000051

512 0.000058

1024 0.000092

2048 0.000186

4096 0.000387

algorithm running in polynomial time to factor N . So, when implementing

RSA, it is not possible at all to use the same modulus for different

users.

3.2.2 Hastad’s Broadcast Attack

The following attack is due to Hastad[18]. It is also known as Common Plain

text Attack due to the fact that it needs, like the previous attack, that the same

plain text be encrypted more than once. In the original attack, presented below,

we actually need k messages, k ≥ e, where e is a common public exponent used

to encode the k messages. The theorem supporting it follows:

Theorem 21. Suppose a plain text m is encrypted k times with the public keys

< e,N1 >,< e,N2 >, ..., < e,Nk > where k ≥ e and the N1, N2, ..., Nk are

pairwise co-prime. Let N0 = min{N1, N2, ..., Nk} and N =
∏k
i=1Ni. If the

plain text m satisfies m < N0 then Marvin, knowing ci ∼= me (mod Ni) and

< e,Ni > for i = 1, 2, ..., k, can compute the plain text m in time polynomial in

log (N).

Proof. Given that the (Ni’s are co-prime, we can apply the CRT to compute

C ∼= me (mod N). As m < N0 we have that me < N1N2...Nk = N and so

C = me. Therefore all we need to do is to compute the e-th root of C over

36

the integers to find out m. All computations can be done in time polynomial in

log (N).

The implementation of this attack is presented in the appendix. Table 4

contains the experimental results:

Table 4: Common Plain text Attack’s Experimental Results

size of N (in bits) time to compute m (seconds)

16 0.000169

32 0.000051

64 0.000049

128 0.000049

256 0.000052

512 0.000062

1024 0.000066

2048 0.000095

4096 0.000097

Another attack, known as the Related Plain text Attack, allows for the en-

crypted messages to be different but related by known polynomials, and requires

a larger number of messages to be encrypted. The result, due to Bleichenbacher

[17], is as follows:

Theorem 22. Given the public keys < e1, N1 >,< e2, N2 >, ..., < ek, Nk >

where the modulus are pairwise co-prime, and f1(x) ∈ ZN1
[x], ..., fk(x) ∈ ZNk [x],

set N0 = min{N1, N2, ..., Nk} and N =
∏k
i=1Ni. For a plain text m < N0, if

k ≥ maxi{eideg(fi(x))} then given ci = fi(m) (mod Ni) and < ei, Ni > for

i = 1, 2, ..., k, the plain text m can be computed in time polynomial in logN and

maxi{eideg(fi(x))}.

Proof. We can suppose all fi(x) are monic. If not, we just need to multiply

them for the inverse of the leading coefficient. If this inverse does not exist for

fj(x), we find a factor of Nj and from cj we find m.

Set δ = maxi{eideg(fi(x))} and also hi = δ − deg(fi(x)ei) for i = 1, ..., k.

Now we define the k monic polynomials of degree δ:

gi(x) = xhi(fi(x)ei − ci) ∈ ZNi , for i = 1, ..., k (43)

37

Notice that gi(m) ∼= 0 (mod Ni) for i = 1, ..., k, so we can use the Chinese

Remainder Theorem using the gi(x) and Ni as inputs and compute a new degree

δ monic polynomial G(x) ∈ ZN [x] satisfying:

G(m) ∼= 0 (mod N) (44)

where m < N0 < N
1
l < N

1
D . So we are in condition to use Coppersmith’s

result. Therefore, we can compute m in time polynomial in log(N) and δ.

The results obtained with the algorithm presented in the appendix are shown

in Table 5.

Table 5: Related Plain text Attack’s Experimental Results

size of N (in bits) time to compute the polynomial G(x) (seconds)

782 0.000289

1093 0.000308

1793 0.000390

3373 0.000524

6251 0.000736

12246 0.001269

23918 0.0026934

The reason for such fast results is that the final step of the attack, solving

the univariate modular polynomial, was not done.

Actually, May and Ritzenhofen [30] have improved the bound for the number

of cypher texts required. Setting δi = eideg(fi(x)), if the inequality

k∑
i=1

1

δi
≥ 1 (45)

is satisfied then the plain text m can be recovered from the k cypher texts.

To prevent this broadcast attacks, we need to ensure that this last inequality

is not satisfied. A very straightforward way would be not to transmit the same

(or related) message massively. If there is a need for this, then we should ensure

that inequality (45) is not satisfied. For this we can transform the messages

with polynomials of high degree or alternatively use high public exponents.

38

3.2.3 Cycling Attack

The Cycling Attack was one of the first attacks on RSA to be described [43].

As the name of this attack suggests, the way this attack works is by repeatedly

encrypting the cypher text. When Marvin gets c ∼= me (mod N), he will en-

crypt the cypher text with the public key and this will lead him to, eventually,

getting an encryption which will be the original cypher text. That is, after l+ 1

encryptions, he will have:

ce
l+1 ∼= c ∼= me (mod N) (46)

so he will know that the previous encryption is the original plain text, that is:

ce
l ∼= m (mod N) (47)

The implementation of this attack resulted in the experimental results shown

in Table 6.

Table 6: Cycling Attack’s Experimental Results

size of N average running time (seconds)

8 0.000012

16 0.000010

32 0.000008

64 0.000010

128 0.000011

256 0.000013

512 0.000011

1024 0.000011

2048 0.000016

4096 0.000015

These results reveal little dependence on N .

This means that, after l encryptions of the cypher text, he finds the plain

text. For this reason, the value l is called the recovery exponent for the

plain text m. So, given a plain text m, all Marvin needs to do is to find its

39

recovery exponent l to reveal the plain text. As this value can be found by an

exhaustive search, we want it to be as large as possible. Immediately we see that

the plain text message m = 1 is a message with recovery exponent equal to 1,

that is, Marvin gets the same cypher text after only one encryption, therefore

he concludes that the message was not encrypted at all. So such a message

should never be sent. Thankfully, most of the plain texts present a much larger

recovery exponent. Although it is not possible to easily calculate l for any given

plain text, one result is particularly helpful to avoid this attack:

Theorem 23. Suppose a plain text m is encrypted with the public key < e,N >.

Then the recovery exponent of m divides λ(λ(N)).

For a proof of this theorem one can read [25]. So, in order to avoid an attack

against our RSA system, we should ensure that λ(λ(N)) is large (as it is the

maximum value of l) and has large prime divisors. It has been shown that, for a

large RSA modulus with balanced, randomly generated primes, this is the usual

case[22].

There is a generalized cycling attack on RSA. Given a cypher text c, it

consists in finding the smallest integer k such that (ce
k − c,N) > 1. After this,

if:

ce
k ∼= c (mod p) and ce

k

� c (mod q) (48)

we have that k = p. Conversely, if

ce
k

� c (mod p) and ce
k ∼= c (mod q) (49)

then we know that k = q. In any way, we found one of the prime factors of

the modulus and therefore we broke the system completely. Again according to

[22], this attack is infeasible for large values of the randomly chosen primes p

an q.

This attack provides us with one extra security measure when choosing the

generating primes p and q. We should ensure that the smallest prime factor of

λ(λ(pq)) is a large number.

3.3 Recovering Plain texts Encrypted With Small Public

Exponent

This section, which could actually include some of the attacks presented in

the previous section, regards the safety of the RSA cryptosystem when a small

40

public exponent, such as e = 3, is used. This may occur when the encrypting

device has small computational powers, such as a cell phone. The attacks are

far from breaking the system as they do not aim to factor the modulus but

rather to recover specific plain texts or part of them.

3.3.1 Stereotyped Message Attack

When encrypting a plain text m, one should be careful about the size of it. As

the last attack of the previous section shows, the plain text m = 1 is easily

recovered. This, unfortunately, is not the only one, specially when we use a

small public exponent. If the public exponent is sufficiently small, there is a

risk that the cypher text will satisfy c = me < N . Knowing this, all Marvin has

to do is to calculate the e-th root of c over the integers. So plain texts m such

that m < N
1
e cannot be used. This is relevant because RSA is often used to

share a key to use in a symmetric key cryptosystem. As an example, if we use

a 1024 bit modulus RSA and a public exponent e = 3, then the key to share

should have at least 342 bits!

The success of the stereotyped message attack depends not on the size of

the plain text, but rather on the fraction of its bits we know. To understand

how this can be possible, we introduce a classical example: suppose that each

day in the morning, a central authority encrypts and sends to another user

the plain text ”The secret for 1, September, 2011 is ?????”. Marvin, knowing

this procedure (suppose he worked at the company and now wishes to have its

revenge on it) will know a part of the plain text and ignore only a small part of

it. Coppersmith[9] showed that, if both the unknown part (that is, the ”?????”)

and the public exponent are sufficiently small, then Marvin can recover the part

of the plain text which he still doesn’t know.

Theorem 24. Suppose a plain text m is encrypted with the public key < e,N >.

Knowing < e,N >, c ∼= me (mod N) and all the plain text m except a fraction

smaller than 1
e of consecutive bits of m, we can calculate the unknown fraction

of bits (and therefore m) in time polynomial in log(N) and e.

Proof. Because there is only a fraction of less than 1
e consecutive bits of m that

we do not know, we can write m = m22k2 +m12k1 +m0 where only the value of

m1 is unknown and |m1| < N
1
e . Let fN (x) ∈ ZN [x] be the polynomial defined

41

by

fN (x) = 2−k1e((m22k2 + x2k1 +m0)e − c) (mod N). (50)

Notice that fN (m1) = 0 (mod N). So m1 is a root of fN (x) (mod N) satisfying

|m1| < N
1
e so we can apply Coppersmith’s theorem to compute m1 in time

polynomial in log(N) and e to find out m.

We implemented this attack and obtained the results shown in Table 7.

Table 7: Stereotyped Message Attack’s Experimental Results

size of N average running time (seconds)

8 0.000057

16 0.000073

32 0.000131

64 0.000247

128 0.000550

256 0.001167

512 0.002209

1024 0.004626

2048 0.009513

The reason for such fast results is that the final step of the attack, solving

the univariate modular polynomial calculated, was not done. This is because

we could not implement Coppersmith’s method.

There is ways of easily avoiding this attack. We can just choose e such

that e > log2(N), which means that Marvin would need to actually know the

whole plain text. An alternative defence consists in applying to the plain text

a random padding which will represent a fraction of more than 1
e of the bits of

the message.

There is an heuristic extension to this attack. If the unknown bits are not

contiguous, we can still recover them as long as the fraction of the total amount

of bits does not exceed 1
e of the bits of the message. This result depends on an

heuristic method created by Coppersmith[9] to find small solutions of bivariate

modular polynomials. If these methods can be proved to be right, a stronger

attack would be proved to exist.

42

Therefore it is recommended that at least a fraction of 1
e of the bits of a

plain text m are randomized.

3.3.2 Related Message Attack

The attack presented in this section is considered a small public exponent attack

because it is proved to work for e = 3. There is, however, some evidence that

it should work also with greater exponents[22]. As this is not yet a fact, we

present only the original version of the attack.

Suppose Alice sends the cypher text c ∼= me (mod N) to Bob. Marvin,

pretending to be Bob, tells Alice that he did not receive the message and requests

that it will be sent again. Now Alice will slightly alter the message, say, with a

different time stamp, and send it again to Bob and also to Marvin. So Marvin

will have two cypher texts, corresponding to two plain texts that, though not

being the same, are related by a somewhat ”simple” relation. Franklin and

Reiter [47] showed that, knowing the two cypher texts and the nature of the

relation between them, provided it is simple, Marvin can recover the plain text.

43

Theorem 25. Let two plain texts m1,m2 satisfy m2 = am1 + b. Suppose this

two plain texts are encrypted with the public key < 3, N >. Then, knowing the

corresponding cypher texts c1, c2, a, b,N and e = 3, it is possible to compute m1

(and therefore m2) in time polynomial in log(N)

Proof. Knowing c1, c2, a, b, e,N we compute:

b(c2 + 2a3c1 − b3)

a(c2 − a3c1 + 2b3)
∼=
m1(3a3bm2

1 + 3a2b2m1 + 3ab3)

3a3bm2
1 + 3a2b2m1 + 3ab3

∼= m1 (mod N) (51)

All calculations are done in time polynomial in log(N), so we have the required

result.

It becomes clear that, when using public exponent e = 3, we cannot send

messages linearly related.

3.3.3 Random Padding Attack

As it was shown before, plain RSA without a prior padding scheme has been

proven to be insecure. So, when implementing RSA, it is mandatory to pad the

messages before encryption, that is, to transform the plain text m in the plain

text m′ = m+b where b is usually a random number with some special structure

(for example, number of bits). This procedure needs special attention. When

the public exponent is e = 3 and the absolute value of b sufficiently small, an

attack by Coppersmith [9] allows for the recovery of the plain text.

Theorem 26. Let < 3, N > be a public key. Suppose two plain texts m1,m2

satisfying m2 = m1 + b are encrypted with the public key < 3, N >. Knowing

the two cypher texts c1 ∼= m3
1 (mod N) , c2 ∼= m3

2 (mod N) and the public key

< 3, N >, if |b| < N
1
9 , it is possible to compute m1 and m2 in time polynomial

in log(N).

Proof. We have that m3
1 − c1 ∼= 0 (mod N) and (m1 + b)3 − c2 ∼= 0 (mod N).

Now lets calculate the resultant, taking this two expressions as polynomials in

b:

Resultantm1
(m3

1 − c1,m1 + b)3 − c2) ∼=
∼= b9 + (3c1 − 3c2)b6 + (3c21 + 21c1c2 + 3c22)b3 + (c1 − c2)3 (mod N)

∼= 0 (mod N)

44

So the monic polynomial of degree 9 given by

fN (x) = x9 +(3c1−3c2)x6 +(3c21 +21c1c2 +3c22)x3 +(c1−c2)3 (mod N) (52)

has a root x0 = b. As b < N
1
9 , we can use Coppersmith’s theorem to

compute b. Once we know the value of b, we simply need to apply the at-

tack described in the previous section for related messages. All computations

are done in time polynomial in log(N).

So it is essential to use a sufficiently large random padding.

3.3.4 Leaking Information

When we implement an RSA cryptosystem, the encryption and decryption ex-

ponents satisfy the so called key equation ed = 1+kφ(N), where k is a constant

which should be kept secret. One of the reasons for this is presented below.

Boneh, Durfee and Frankel [10] [15] showed that, knowing k, Marvin can

find some of the most significant bits of the decryption exponent:

Theorem 27. Let < e,N > and < d, p, q,N > be a pair of public/private keys

satisfying the key equation ed = 1 + kφ(N). Then, knowing < e,N > and k, we

can compute d1 such that |d1 − d| < p+ q in time polynomial in log(N).

Proof. Set d1 = d 1e (1 + kN)c. So d1 = 1
e (1 + kN) + α for some α such that

|α| < 1. Rewriting the key equation:

ed = 1 + kφ(N)⇔ ed = 1 + k(N − s) (53)

where s=p+q-1, we can compute:

|d1 − d| = |
1 + kN

e
+ α− 1 + k(N − s)

e
| = |ks

e
+ α| < s+ 1 = p+ q. (54)

When we use balanced primes to generate the modulus, the inequality

p + q > 3
2N

1
2 holds. This means that given only the public key and k, we

can always compute d1 : |d1 − d| < 3
2N

1
2 . This means that we know half of the

most significant bits of the private exponent.

We still need to explain why this attack is considered a small public exponent

attack. The reason for this is that we usually have no information at all about

the constant k in the key equation but, when e = 3, we need to have k = 2 The

following result is taken from [4].

45

Theorem 28. Given an RSA modulus N = pq with p, q > 3 and the public

key < 3, N >, then the constant k in the key equation ed = 1 + kφ(N) satisfies

k = 2.

Proof. From the key equation ed − 1 = kφ(N) we know that 0 < k < e.

So, in our case we have k = 1 or k = 2. Because (3, p − 1) = 1 we have

p − 1 � 0 (mod 3) and, as p > 3, we have (3, p) = 1 and therefore

p− 1 � 2 (mod 3) and so we get that{
p− 1 ∼= 1 (mod 3)

q − 1 ∼= 1 (mod 3)

So φ(N) = (p− 1)(q − 1) ∼= 1 (mod 3). Taking the key equation modulo e = 3,

we get:

3d ∼= 1 + kφ(N) (mod 3) =⇒ k ∼= 2 (mod 3) (55)

Because k = 1 or k = 2, we have k = 2 and this concludes our proof.

So every time we use e = 3 we are giving away half of the bits of the

private exponent. However, this has not been proven to be enough to factor the

modulus[22], so this attack does not represent a total break of the RSA.

3.4 Factoring the modulus of RSA with Small Private Ex-

ponent d

After the previous attacks, we now study attacks on RSA sessions where the

private exponent, d, is low. These attacks are much more destructive than the

ones presented in the previous section: they aim to factor the modulus, thus

breaking the whole system. The theorems presented on this section suppose the

encrypting and decrypting exponents are defined modulo λ(N). The results,

however, would apply if these exponents were instead defined modulo φ(N) like

in the previous sections.

We present one first result, which will prove useful for the first attack of this

section. Given the key equation ed = 1 + kλ(N), we have

0 < k =
(ed− 1)

λ(N)
<

ed

λ(N)
< min{e, d} (56)

In particular we have that k < d.

46

3.4.1 Wiener’s Continuous Fractions Attack

This attack, extremely simple to implement, is due to Wiener[46]. It factors the

RSA modulus provided that the private exponent d is sufficiently small.

Theorem 29. Given an RSA modulus N = pq and a public key < e,N >,

let < d, p, q,N > be its corresponding private key, where ed = 1 + kλ(N). Let

g = (p − 1, q − 1), g0 = g
(g,k) and k0 = k

(g,k) . If d < pq
2(p+q−1)g0k0 = N

2sg0k0
then

N can be factored in time polynomial in log(N) and g
k .

Proof. Given that

λ(N) = lcm(p− 1, q − 1) =
φ(N)

(p− 1, q − 1)
=
N − s
g

(57)

we can rewrite the key equation as:

ed = 1 + kλ(N) = 1 +
k

g
φ(N) = 1 +

k0
g0

(N − s) (58)

where k0 = k
(k,g) and g0 = g

(k,g) . Suppose we divide both sides of this equation

by dN :

ed = 1 +
k0
g0

(N − s)⇔ e

N
=

1

dN
+

k0
g0dN

(N − s) =
1

dN
+

k0
g0d
− k0s

g0dN
(59)

Now we can majorate:

| e
N
− k0
g0d
| = | 1

dN
− k0s

dg0N
| < k0s

dg0N
=

1

2(dg0)2
(60)

So, from the theorem presented in the Continuous Fractions section, we know

that k0
dg0

is one of the convergents in the continuous fraction expansion of e
N .

Let ci = ai
bi

be the i-th convergent of e
N . Then for some j we have k0

dg0
=

aj
bj

.

Now we can notice that the equation can be written as:

ed = 1 +
k0
g0
φ(N)⇔ φ(N) = e

dg0
k0
− g0
k0

= be bj
aj
c − bg0

k0
c (61)

So, if we know the correct convergent cj and guess the value of b g0k0 c, we can

compute φ(N). To find the convergent and compute φ(N) we proceed as follows:

for each convergent, we compute the corresponding candidate to φ(N): φc =

b eci c + m. For each candidate, we try to factor the modulus, that is, solving

the system N = pq and φc = (p − 1)(q − 1). If a factorization is reached, then

we have the right convergent. If none of the candidates is the right one, we

47

increment m by one and start again. This way, we are sure that m will be equal

to b g0k0 c at some point. As m < b g0k0 c, we try a maximum of b g0k0 c iterations for

each convergents, whose total number is polynomial in log(N).

The implementation of this attack is presented in the appendix. The results

obtained are represented in Table 8.

Table 8: Wiener’s Attack’s Experimental Results

size of N average running time (seconds)

32 0.007722

64 0.012929

128 0.046937

256 0.151693

512 0.497492

1024 1.78601

The most obvious way to avoid this attack is do simply use d > N0.25. In its

work, however, Wiener presented yet another solution to avoid this attack: using

a larger public exponent e. This is not a problem: after choosing e, one simply

adds to e successively multiples of φ(N) until e satisfies e > N
3
2 . Therefore, it

is still possible to avoid this attack and at the same time use a small private

exponent as long as this last inequality is satisfied.

3.4.2 Improving Wiener’s Attack

In its Ph.D. dissertation[16], presented in 2002, Durfee, working with Boneh,

discovered a new way to attack RSA when a small secret exponent is used. Its

attack is an improvement over Wiener’s attack as it aims to show that a private

exponent d < N0.292 renders the system totally insecure, improving Wiener’s

bound of d < N0.25. However, proof of this was not found by Durfee, thought

the attacks work in practice. We present a sketch of his attack.

If we take the key equation we can rewrite it in the following way:

ed ∼= 1 (mod φ(N))⇔ ed+ k(N + 1− (p+ q)) = 1 (62)

48

If we set s = −(p+ q), A = N + 1 and take the equation (mod e), the equation

becomes:

k(A+ s) ∼= 1 (mod e) (63)

The following notation will be used for this attack and the next: we will write

e = Nα for some α. As e is usually the same size of N , α is usually close to 1.

As for d, as we are talking about small private exponent attacks, we will assume

it satisfies the inequality d < Nδ for some δ. Therefore the goal of a low private

key attack is to work for as high a δ as possible. Now lets look at the existing

constraints over k and s:

from the key equation we get:

|k| < de

φ(N)
≤ 3de

2N
<

3

2
e1+

δ−1
α . (64)

as we know that p and q are less than 2 2
√
N we have:

|s| < 3N0.5 = 3e
1
2α (65)

As in the usual case we have α ≈ 1, if we ignore the small constants we have

the following problem, known as the small inverse problem: finding integers

k and s that satisfy:

k(A+ s) ∼= 1 (mod e) such that |s| < e0.5 and |k| < eδ (66)

The reason for the name of the problem is that, in some way, we are given an

integer A and we are looking for a number close to it whose inverse is small

(mod e). If, for a given δ we can list all the solutions of this problem, then

one of them will reveal the true value of s and therefore allow us to factor N

This means that the RSA system is insecure when one uses a private exponent

satisfying d < Nδ for a value of δ for which we can solve the Small Inverse

Problem efficiently.

Thought it was Boneh and Durfee’s conviction that this problem can be

solved for δ < 0.292, they could not prove this fact. The reason for this is that

their solution to the small inverse problem, which is based on the LLL algorithm

and Coppersmith’s results, requires Conjecture 1 . However, their attack does

result in practice and for this reason a decryption exponent δ < 0.292 should be

49

avoided. It should be noted that, on their work, Boneh and Durfee claim their

conviction that the small inverse problem can solved even for δ < 0.5.

Blomer and May[3], based on the Boneh-Durfee attack, presented a new

heuristic attack for solving the small inverse problem for δ < 0.290. Though

they do not improve the previous existing bound, their attack is simpler to

analyse.

Their main result, again dependant on Conjecture 1, is presented now. This

is the general result, where the encryption exponent e is not assumed to be of

the same magnitude of N , that is, α 6= 1.

Theorem 30. For every ε > 0, there exists an N0 such that for every N > N0

the following holds: Let N = pq be an RSA modulus and p, q balanced primes,

e = Nα the encryption exponent and d = Nδ its corresponding decryption

exponent defined modulo φ(N) such that

δ <
2

5
− 3

5
α+

1

5

√
4α2 − 2α+ 4− ε.

Then N can be factored in time polynomial in log(N), provided that Conjecture

1 holds.

We can see that setting α = 1 yields the bound δ < 0.29.

50

4 Conclusions

The several attacks presented in this work, or any other known attack, have

not rendered the RSA cryptosystem unsafe. There is good prospects that some

attacks, specially the ones by Boneh and Durfee and Blomer and May will

become more powerful as soon as we get more knowledge on what we called The

Coppersmith Method Conjectures. These conjectures seem to be closely related

with the security of RSA and proving them would be definitely useful.

However, none of these heuristic attacks seems to threat RSA security com-

pletely. New bounds will be set and new precautions will be needed. But the

most important criteria for the RSA safety is still the Large Integer Factorization

Problem. Though there have been several advances in this area, an algorithm

running in polynomial time to factor large integers is still not known.

The experiments on this work have not led to any new results but we hope

that, along with the simple implementations presented, they can motivate the

reader to further explore the existing attacks on RSA and to think how one can

improve them.

One topic that deserves more study is the variants of RSA. They present

exciting new possibilities but their security has not yet been as analysed as

thoroughly as that of standard RSA. Its probably in them that the future of

cryptography lies, so the sooner we understand them, the sooner it will be safer

for us to rely on them.

51

5 Bibliography

[1] Kamilah Abdullah, Comparison between the RSA Cryptosystem and Ellip-

tic Curve Cryptography, Master’s thesis, University of Waikato, 1998.

[2] Manindra Agrawal, Primality Tests Based on Fermat’s Little Theorem,

ICDCN, 2006, pp. 288–293.

[3] J Blomer and A. May, Low Secret Exponent RSA Revisited, Lecture Notes

in Computer Science (2001).

[4] Dan Boneh, Twenty Years of Attacks on the RSA Cryptosystem, Notices

of the American Mathematical Society (1999).

[5] Richard P. Brent, Recent Progress and Prospects for Integer Factorisation

Algorithms, Proceeding COCOON ’00 Proceedings of the 6th Annual In-

ternational Conference on Computing and Combinatorics (2000).

[6] Matthew E. Briggs, An Introduction to the General Number Field Sieve,

Master’s thesis, Virginia Polytechnic Institute and State University, 1998.

[7] Daniel R. L. Brown, A Weak-Randomizer Attack on RSA-OAEP with e =

3, 2005.

[8] Carlos Frederico Cid, Cryptanalysis of RSA: A Survey, Information Secu-

rity Reading Room (1988).

[9] D. Coppersmith, Small Solutions to Polynomial Equations, and Low Expo-

nent RSA Vulnerabilities, Journal of Cryptology (1997).

[10] G Durfee D Boneh and Y Frankel, An Attack on RSA Given a Small Frac-

tion of the Private Key Bits, Lecture Notes in Computer Science (1998).

[11] Tania Lange Daniel J. Bernstein, Peter Birkner and Christiane Peters, ECM

using Edwards Curves, Journal of Cryptology (2010).

[12] J. M. DeLaurentis, A Further Weakness in the Common Modulus Protocol

for the RSA Cryptoalgorithm, Cryptologia (1984).

52

[13] Whitfield Diffie and Martin E. Hellman, New Directions in Cryptography,

IEEE Transactions on Information Theory (1976).

[14] ANDREJ DUJELLA, Continued Fractions and RSA with Small Secret Ex-

ponent, Tatra Mt. Math. Publ (2004).

[15] D Boneh G Durfee and Y Frankel, Exposing an RSA Private Key Given a

Small Fraction of its Bits, Journal of Cryptology (2001).

[16] Glenn Durfee, Cryptanalysis of RSA Using Algebraic and Lattice Methods,

Ph.D. thesis, Stanford University, 2002.

[17] M. K. Franklin and M. K. Reiter, A Linear Protocol Failure for RSA with

Exponent Three, CRYPTO ’95 rump session (1995).

[18] J. Hastad, On using RSA with Low Exponent in a Public Key Network,

Lecture Notes in Computer Science (1985).

[19] M Jason Hinek, Low Public Exponent Partial Key and Low Private Expo-

nent Attacks on Multi-prime RSA, Master’s thesis, University of Waterloo,

2002.

[20] M. Jason Hinek, Another Look at Small RSA Exponents, 2006.

[21] M Jason Hinek, On the Security of Some Variants of RSA, Ph.D. thesis,

University of Waterloo, 2007.

[22] M. Jason Hinek, Cryptanalysis of RSA and its Variants, Chapman Hall,

2010.

[23] M. Jason Hinek and Charles C. Y. Lam, Common Modulus Attacks on

Small Private Exponent RSA and Some Fast Variants (in Practice), IACR

Cryptology ePrint Archive 2009 (2009), 37.

[24] Abdullah Darwish Imad Khaled Salah and Saleh Oqeili, Mathematical At-

tacks on RSA Cryptosystem, Journal of Computer Science (2006).

[25] S. Katzenbeisser, Recent Advances in RSA Cryptography, Klewer Academic

Publishers (2001).

[26] A.K. Lenstra, H.W.jun. Lenstra, and Lászlo Lovász, Factoring Polynomials

With Rational Coefficients, Math. Ann. 261 (1982), 515–534.

53

[27] Arjen K. Lenstra, Primality Testing, Proceedings of Symposia in Applied

Mathematics, Mathematics and Computer Science.

[28] Arjen K Lenstra, Unbelievable Security Matching AES Security Using Pub-

lic Key Systems, Proceedings Asiacrypt 2001, LNCS 2248, Springer-Verlag

2001, 6786, Springer-Verlag, 2001, pp. 67–86.

[29] Neeraj Kayal Manindra Agrawal and Nitin Saxena, PRIMES is in P, Ann.

of Math (2004).

[30] A. May and M. Ritzenhofen, Solving Systems of Modular Equations in One

Variable: How Many RSA-Encrypted Messages Does Eve Need to Know?,

Public Key Cryptography (2008).

[31] Alexander May, Using LLL-Reduction for Solving RSA and Factorization

Problems: A Survey, Journal of Cryptology (2010).

[32] S.M. Mashihure Romman Md. Ali-Al-Mamun, Mohammad Motaharul Is-

lam, Performance Evaluation of Several Efficient RSA Variants, Interna-

tional Journal of Computer Science and Network Security (2008).

[33] G. L. Miller, Riemann’s Hypothesis and Tests for Primality, Journal of

Computer and System Sciences (1976).

[34] P.L. Montgomery, Modular Multiplication Without Trial Division, Math.

Computation (1985).

[35] J. M. Pollard, A Monte Carlo Method for Factorization, BIT Numerical

Mathematics (1975).

[36] Carl Pomerance, A Tale of Two Sieves, Notices of the AMS (1996).

[37] H. Riesel, Prime Numbers and Computer Methods for Factorization,

Birkhauser, 1994.

[38] A. Shamir R.L. Rivest and L. Adleman, A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems, Magazine Communications of

the ACM (1978).

[39] Josef Pieprzyk Huaxiong Wang Ron Steinfeld, Scott Contini, Converse Re-

sults to the Wiener Attack on RSA, International Workshop on Practice

and Theory in Public Key Cryptography (2005).

54

[40] Burt Rosenberg, The Solovay-Strassen Primality Test, October 1993.

[41] R G Salembier and Paul Southerington, An Implementation of the AKS

Primality Test, Computer Engineering (2005).

[42] G. J. Simmons, A ”Weak” Privacy Protocol using the RSA Crypto Algo-

rithm, Cryptologia (1983).

[43] G. J. Simmons and M. J. Norris, Preliminary Comments on the MIT

Public-key Cryptosystem, Cryptologia (1977).

[44] William Stein, Elementary number theory. Primes, congruences, and se-

crets. A computational approach., New York, NY: Springer, 2009 (English).

[45] M Trott, The Mathematica Guidebook for Symbolics, Springer-Verlag, 2006.

[46] M J Wiener, Cryptanalysis of Short RSA Secret Exponents, IEEE Trans-

actions on Information Theory (1990).

[47] Oded Yacobi and Yacov Yacobi, A New Related Message Attack on RSA,

Essays in Memory of Shimon Even, 2006, pp. 187–195.

[48] Song Y. Yan, Cryptanalytic Attacks on RSA, Springer, 2008.

55

A Implementations of the attacks from section

3.2

A.1 Common Modulus Attack

rcm = {};rcm = {};rcm = {};
i = 3;i = 3;i = 3;

While[i < 13,While[i < 13,While[i < 13,

nbits = 2∧i;nbits = 2∧i;nbits = 2∧i;

p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];
q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];
While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];
n = p ∗ q;n = p ∗ q;n = p ∗ q;
e1 = n;e1 = n;e1 = n;

While[e1 == n, e1 = RandomPrime[n];]While[e1 == n, e1 = RandomPrime[n];]While[e1 == n, e1 = RandomPrime[n];]

e2 = n;e2 = n;e2 = n;

While[e2 == n‖e2 == e1, e2 = RandomPrime[n];]While[e2 == n‖e2 == e1, e2 = RandomPrime[n];]While[e2 == n‖e2 == e1, e2 = RandomPrime[n];]

m = RandomPrime[n];m = RandomPrime[n];m = RandomPrime[n];

c1 = PowerMod[m, e1, n];c1 = PowerMod[m, e1, n];c1 = PowerMod[m, e1, n];

c2 = PowerMod[m, e2, n];c2 = PowerMod[m, e2, n];c2 = PowerMod[m, e2, n];

r = Append[rcm, {nbits,Timing[r = Append[rcm, {nbits,Timing[r = Append[rcm, {nbits,Timing[

l = ExtendedGCD[e1, e2];l = ExtendedGCD[e1, e2];l = ExtendedGCD[e1, e2];

a1 = l[[2, 1]];a1 = l[[2, 1]];a1 = l[[2, 1]];

a2 = l[[2, 2]];a2 = l[[2, 2]];a2 = l[[2, 2]];

dec = Mod[PowerMod[c1, a1, n] ∗ PowerMod[c2, a2, n], n]dec = Mod[PowerMod[c1, a1, n] ∗ PowerMod[c2, a2, n], n]dec = Mod[PowerMod[c1, a1, n] ∗ PowerMod[c2, a2, n], n]

][[1]]}];][[1]]}];][[1]]}];
Print[rcm];Print[rcm];Print[rcm];

i++;i++;i++;

]]]

56

A.2 DeLaurentis Attack

rla = {};rla = {};rla = {};
i = 3;i = 3;i = 3;

While[i < 13,While[i < 13,While[i < 13,

nbits = 2∧i;nbits = 2∧i;nbits = 2∧i;

p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];
q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];
While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];
n = p ∗ q;n = p ∗ q;n = p ∗ q;
e1 = n;e1 = n;e1 = n;

While[e1 == n‖ e1 == p‖e2 == q, e1 = RandomPrime[n];];While[e1 == n‖ e1 == p‖e2 == q, e1 = RandomPrime[n];];While[e1 == n‖ e1 == p‖e2 == q, e1 = RandomPrime[n];];

d1 = PowerMod[e1,−1, n];d1 = PowerMod[e1,−1, n];d1 = PowerMod[e1,−1, n];

e2 = n;e2 = n;e2 = n;

While[e2 == n‖e2 == e1, e2 = RandomPrime[n];];While[e2 == n‖e2 == e1, e2 = RandomPrime[n];];While[e2 == n‖e2 == e1, e2 = RandomPrime[n];];

rla = Append[rla, {nbits,Timing[rla = Append[rla, {nbits,Timing[rla = Append[rla, {nbits,Timing[

naux = (e1 ∗ d1− 1)/GCD[e2, e1 ∗ d1− 1];naux = (e1 ∗ d1− 1)/GCD[e2, e1 ∗ d1− 1];naux = (e1 ∗ d1− 1)/GCD[e2, e1 ∗ d1− 1];

d2crypt = PowerMod[e2,−1,naux]d2crypt = PowerMod[e2,−1,naux]d2crypt = PowerMod[e2,−1,naux]

][[1]]}];][[1]]}];][[1]]}];
Print[r1];Print[r1];Print[r1];

i++;i++;i++;

]]]

A.3 Hastad’s Common Plaintext Attack

rhc = {};rhc = {};rhc = {};
e = 3;e = 3;e = 3;

i = 3;i = 3;i = 3;

While[i < 12,While[i < 12,While[i < 12,

nbits = 2∧i;nbits = 2∧i;nbits = 2∧i;

nlist = {};nlist = {};nlist = {};
b = 1;b = 1;b = 1;

primos = {};primos = {};primos = {};
While[Length[nlist] < e+ 2,While[Length[nlist] < e+ 2,While[Length[nlist] < e+ 2,

p = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];p = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];p = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];

57

q = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];q = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];q = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];
While[Intersection[{p},primos] 6= {},While[Intersection[{p},primos] 6= {},While[Intersection[{p},primos] 6= {},
p = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];];p = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];];p = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];];

While[Intersection[{q},primos] 6= {}‖p == q,While[Intersection[{q},primos] 6= {}‖p == q,While[Intersection[{q},primos] 6= {}‖p == q,

q = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];];q = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];];q = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];];

n = p ∗ q;n = p ∗ q;n = p ∗ q;
neuler = (p− 1)(q − 1);neuler = (p− 1)(q − 1);neuler = (p− 1)(q − 1);

If[GCD[e, neuler] == 1,If[GCD[e,neuler] == 1,If[GCD[e, neuler] == 1,

nlist = Append[nlist, {e, n}];nlist = Append[nlist, {e, n}];nlist = Append[nlist, {e, n}];
primos = Append[primos, p];primos = Append[primos, p];primos = Append[primos, p];

primos = Append[primos, q];primos = Append[primos, q];primos = Append[primos, q];

];];];

];];];

n1 = nlist[[4]];n1 = nlist[[4]];n1 = nlist[[4]];

n2 = nlist[[5]];n2 = nlist[[5]];n2 = nlist[[5]];

n3 = nlist[[3]];n3 = nlist[[3]];n3 = nlist[[3]];

m = RandomInteger[{1,Min[n1,n2,n3]− 1}];m = RandomInteger[{1,Min[n1,n2,n3]− 1}];m = RandomInteger[{1,Min[n1,n2,n3]− 1}];
c1 = PowerMod[m, e,n1];c1 = PowerMod[m, e,n1];c1 = PowerMod[m, e,n1];

c2 = PowerMod[m, e,n2];c2 = PowerMod[m, e,n2];c2 = PowerMod[m, e,n2];

c3 = PowerMod[m, e,n3];c3 = PowerMod[m, e,n3];c3 = PowerMod[m, e,n3];

rhc = Append[rhc, {BitLength[n],Timing[rhc = Append[rhc, {BitLength[n],Timing[rhc = Append[rhc, {BitLength[n],Timing[

n0 = Min[n1,n2,n3];n0 = Min[n1,n2,n3];n0 = Min[n1,n2,n3];

n = n1 ∗ n2 ∗ n3;n = n1 ∗ n2 ∗ n3;n = n1 ∗ n2 ∗ n3;

c = ChineseRemainder[{c1, c2, c3}, {n1,n2,n3}];c = ChineseRemainder[{c1, c2, c3}, {n1,n2,n3}];c = ChineseRemainder[{c1, c2, c3}, {n1,n2,n3}];
dec = c∧(1/e);][[1]]}dec = c∧(1/e);][[1]]}dec = c∧(1/e);][[1]]}
];];];

i++;i++;i++;

];];];

rhcrhcrhc

58

A.4 Related Plaintext Attack

rrp = {};rrp = {};rrp = {};
b = 3;b = 3;b = 3;

While[b < 10,While[b < 10,While[b < 10,

nbits = 2∧b;nbits = 2∧b;nbits = 2∧b;

i = 3;i = 3;i = 3;

g = 50;g = 50;g = 50;

nlist = {};nlist = {};nlist = {};
primos = {};primos = {};primos = {};
While[Length[nlist] < g,While[Length[nlist] < g,While[Length[nlist] < g,

e = Prime[RandomInteger[{2, 5}]];e = Prime[RandomInteger[{2, 5}]];e = Prime[RandomInteger[{2, 5}]];
p = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];p = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];p = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];
q = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];q = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];q = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];
While[Intersection[{p},primos] 6= {},While[Intersection[{p},primos] 6= {},While[Intersection[{p},primos] 6= {},
p = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];];p = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];];p = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];];

While[Intersection[{q},primos] 6= {}‖p == q,While[Intersection[{q},primos] 6= {}‖p == q,While[Intersection[{q},primos] 6= {}‖p == q,

q = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];];q = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];];q = RandomPrime[{2∧(nbits− 1), 2∧nbits− 1}];];

n = p ∗ q;n = p ∗ q;n = p ∗ q;
neuler = (p− 1)(q − 1);neuler = (p− 1)(q − 1);neuler = (p− 1)(q − 1);

If[GCD[e,neuler] == 1,If[GCD[e, neuler] == 1,If[GCD[e, neuler] == 1,

nlist = Append[nlist, {e, n}];nlist = Append[nlist, {e, n}];nlist = Append[nlist, {e, n}];
primos = Append[primos, p];primos = Append[primos, p];primos = Append[primos, p];

primos = Append[primos, q],primos = Append[primos, q],primos = Append[primos, q],

nbits = nbits + 1;nbits = nbits + 1;nbits = nbits + 1;

];];];

];];];

l = Max[Table[nlist[[i, 1]] ∗ 2, {i, 1, g}]];l = Max[Table[nlist[[i, 1]] ∗ 2, {i, 1, g}]];l = Max[Table[nlist[[i, 1]] ∗ 2, {i, 1, g}]];
coef = Table[{RandomInteger[{0, 2}], i}, {i, 1, l}];coef = Table[{RandomInteger[{0, 2}], i}, {i, 1, l}];coef = Table[{RandomInteger[{0, 2}], i}, {i, 1, l}];
poli = Function[{i,m},poli = Function[{i,m},poli = Function[{i,m},
Mod[m∧coef[[i, 1]] + coef[[i, 2]],nlist[[i, 2]]]Mod[m∧coef[[i, 1]] + coef[[i, 2]],nlist[[i, 2]]]Mod[m∧coef[[i, 1]] + coef[[i, 2]],nlist[[i, 2]]]

];];];

deg = Function[i, coef[[i, 1]]];deg = Function[i, coef[[i, 1]]];deg = Function[i, coef[[i, 1]]];

max = Max[Table[nlist[[i, 1]] ∗ deg[i], {i, 1, l}]];max = Max[Table[nlist[[i, 1]] ∗ deg[i], {i, 1, l}]];max = Max[Table[nlist[[i, 1]] ∗ deg[i], {i, 1, l}]];
i = 2;i = 2;i = 2;

n0 = nlist[[1, 2]];n0 = nlist[[1, 2]];n0 = nlist[[1, 2]];

59

While[i ≤ 23,While[i ≤ 23,While[i ≤ 23,

n0 = Min[n0,nlist[[i, 2]]];n0 = Min[n0,nlist[[i, 2]]];n0 = Min[n0,nlist[[i, 2]]];

i++;i++;i++;

];];];

i = 2;i = 2;i = 2;

n = nlist[[1, 2]];n = nlist[[1, 2]];n = nlist[[1, 2]];

While[i ≤ 23,While[i ≤ 23,While[i ≤ 23,

n = n ∗ nlist[[i, 2]];n = n ∗ nlist[[i, 2]];n = n ∗ nlist[[i, 2]];

i++;i++;i++;

];];];

m = RandomInteger[n0− 1];m = RandomInteger[n0− 1];m = RandomInteger[n0− 1];

clist = Table[PowerMod[poli[i,m],nlist[[i, 1]],nlist[[i, 2]]],clist = Table[PowerMod[poli[i,m],nlist[[i, 1]],nlist[[i, 2]]],clist = Table[PowerMod[poli[i,m],nlist[[i, 1]],nlist[[i, 2]]],

{i, 1, l}];{i, 1, l}];{i, 1, l}];

rrp = Append[rrp, {BitLength[n],Timing[rrp = Append[rrp, {BitLength[n],Timing[rrp = Append[rrp, {BitLength[n],Timing[

sigma = Max[Table[nlist[[i, 1]] ∗ deg[i], {i, 1, l}]];sigma = Max[Table[nlist[[i, 1]] ∗ deg[i], {i, 1, l}]];sigma = Max[Table[nlist[[i, 1]] ∗ deg[i], {i, 1, l}]];
h = Table[sigma− deg[i] ∗ nlist[[i, 1]], {i, 1, l}];h = Table[sigma− deg[i] ∗ nlist[[i, 1]], {i, 1, l}];h = Table[sigma− deg[i] ∗ nlist[[i, 1]], {i, 1, l}];
gpoli = Function[{i,m},gpoli = Function[{i,m},gpoli = Function[{i,m},
Mod[PowerMod[m,h[[i]],nlist[[i, 2]]]∗Mod[PowerMod[m,h[[i]],nlist[[i, 2]]]∗Mod[PowerMod[m,h[[i]],nlist[[i, 2]]]∗
(PowerMod[poli[i,m],nlist[[i, 1]],nlist[[i, 2]]]− clist[[i]]),(PowerMod[poli[i,m],nlist[[i, 1]],nlist[[i, 2]]]− clist[[i]]),(PowerMod[poli[i,m],nlist[[i, 1]],nlist[[i, 2]]]− clist[[i]]),

nlist[[i, 2]]]nlist[[i, 2]]]nlist[[i, 2]]]

];];];

mlist = Table[n/nlist[[i, 2]], {i, 1, l}];mlist = Table[n/nlist[[i, 2]], {i, 1, l}];mlist = Table[n/nlist[[i, 2]], {i, 1, l}];
minv = Table[PowerMod[mlist[[i]],−1,nlist[[i, 2]]], {i, 1, l}];minv = Table[PowerMod[mlist[[i]],−1,nlist[[i, 2]]], {i, 1, l}];minv = Table[PowerMod[mlist[[i]],−1,nlist[[i, 2]]], {i, 1, l}];
gcrt = Function[m,gcrt = Function[m,gcrt = Function[m,

r = 0;r = 0;r = 0;

i = 1;i = 1;i = 1;

While[i ≤ l,While[i ≤ l,While[i ≤ l,
r = r + gpoli[i,m]mlist[[i]]minv[[i]];r = r + gpoli[i,m]mlist[[i]]minv[[i]];r = r + gpoli[i,m]mlist[[i]]minv[[i]];

i++;i++;i++;

];];];

Mod[r, n]Mod[r, n]Mod[r, n]

];];];

][[1]]}];][[1]]}];][[1]]}];
b++;b++;b++;

60

];];];

rrprrprrp

61

B Implementations of the attacks from section

3.3

B.1 Stereotyped Message Attack

rsm = {};rsm = {};rsm = {};
i = 3;i = 3;i = 3;

While[i < 14,While[i < 14,While[i < 14,

nbits = 2∧i;nbits = 2∧i;nbits = 2∧i;

p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];
q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];
While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];
n = p ∗ q;n = p ∗ q;n = p ∗ q;
e = 3;e = 3;e = 3;

While[GCD[e, (p− 1)(q − 1)] 6= 1, e = NextPrime[e];];While[GCD[e, (p− 1)(q − 1)] 6= 1, e = NextPrime[e];];While[GCD[e, (p− 1)(q − 1)] 6= 1, e = NextPrime[e];];

Print["RSA gerado: ", i];Print["RSA gerado: ", i];Print["RSA gerado: ", i];

bits = Table[RandomInteger[{0, 1}], {i, 1,nbits}];bits = Table[RandomInteger[{0, 1}], {i, 1,nbits}];bits = Table[RandomInteger[{0, 1}], {i, 1,nbits}];
l = Length[bits];l = Length[bits];l = Length[bits];

f = Floor[(1/e) ∗ l]− 1;f = Floor[(1/e) ∗ l]− 1;f = Floor[(1/e) ∗ l]− 1;

p = RandomInteger[{1, l − f}];p = RandomInteger[{1, l − f}];p = RandomInteger[{1, l − f}];
u = 1;u = 1;u = 1;

m = 0;m = 0;m = 0;

While[u<=l,While[u<=l,While[u<=l,

m = m+ bits[[u]] ∗ 2∧(l − u);m = m+ bits[[u]] ∗ 2∧(l − u);m = m+ bits[[u]] ∗ 2∧(l − u);

u++;u++;u++;

];];];

c = PowerMod[m, e, n];c = PowerMod[m, e, n];c = PowerMod[m, e, n];

rsm = Append[rsm, {nbits,Timing[rsm = Append[rsm, {nbits,Timing[rsm = Append[rsm, {nbits,Timing[

k = 1;k = 1;k = 1;

m2 = 0;m2 = 0;m2 = 0;

While[k < p,While[k < p,While[k < p,

m2 = m2 + 2∧(32− k) ∗ bits[[k]];m2 = m2 + 2∧(32− k) ∗ bits[[k]];m2 = m2 + 2∧(32− k) ∗ bits[[k]];

k++;k++;k++;

];];];

62

j = p+ f ;j = p+ f ;j = p+ f ;

m0 = 0;m0 = 0;m0 = 0;

While[j<=l,While[j<=l,While[j<=l,

m0 = m0 + 2∧(l − j) ∗ bits[[j]];m0 = m0 + 2∧(l − j) ∗ bits[[j]];m0 = m0 + 2∧(l − j) ∗ bits[[j]];

j++;j++;j++;

];];];

k1 = l − (p+ f − 1);][[1]]}];k1 = l − (p+ f − 1);][[1]]}];k1 = l − (p+ f − 1);][[1]]}];
i++;i++;i++;

];];];

rsmrsmrsm

B.2 Related Message Attack

rrm = {};rrm = {};rrm = {};
i = 3;i = 3;i = 3;

While[i < 13,While[i < 13,While[i < 13,

nbits = 2∧i;nbits = 2∧i;nbits = 2∧i;

p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];
q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];
While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];
n = p ∗ q;n = p ∗ q;n = p ∗ q;
e = 3;e = 3;e = 3;

m1 = RandomPrime[{5, n}];m1 = RandomPrime[{5, n}];m1 = RandomPrime[{5, n}];
a = RandomInteger[n];a = RandomInteger[n];a = RandomInteger[n];

b = RandomInteger[n];b = RandomInteger[n];b = RandomInteger[n];

m2 = am1 + b;m2 = am1 + b;m2 = am1 + b;

c1 = PowerMod[m1, e, n];c1 = PowerMod[m1, e, n];c1 = PowerMod[m1, e, n];

c2 = PowerMod[m2, e, n];c2 = PowerMod[m2, e, n];c2 = PowerMod[m2, e, n];

rrm = Append[rrm, {nbits,Timing[rrm = Append[rrm, {nbits,Timing[rrm = Append[rrm, {nbits,Timing[

Mod[(b(c2 + 2a∧3c1− b∧3))/(a(c2− a∧3c1 + 2b∧3)), n]][[1]]}];Mod[(b(c2 + 2a∧3c1− b∧3))/(a(c2− a∧3c1 + 2b∧3)), n]][[1]]}];Mod[(b(c2 + 2a∧3c1− b∧3))/(a(c2− a∧3c1 + 2b∧3)), n]][[1]]}];
i++;i++;i++;

]]]

rrmrrmrrm

63

C Implementation of Wiener’s attack

rwi = {};rwi = {};rwi = {};
i = 5;i = 5;i = 5;

While[i < 14,While[i < 14,While[i < 14,

nbits = 2∧i;nbits = 2∧i;nbits = 2∧i;

p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];
q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];
While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];
n = p ∗ q;n = p ∗ q;n = p ∗ q;
lambdan = LCM[(p− 1), (q − 1)];lambdan = LCM[(p− 1), (q − 1)];lambdan = LCM[(p− 1), (q − 1)];

d = RandomPrime[Floor[n∧(1/4)]];d = RandomPrime[Floor[n∧(1/4)]];d = RandomPrime[Floor[n∧(1/4)]];

While[GCD[d, lambdan] 6= 1, d = RandomPrime[Floor[n∧(1/4)]];];While[GCD[d, lambdan] 6= 1, d = RandomPrime[Floor[n∧(1/4)]];];While[GCD[d, lambdan] 6= 1, d = RandomPrime[Floor[n∧(1/4)]];];

g0 = n;g0 = n;g0 = n;

k0 = 1;k0 = 1;k0 = 1;

l = 1;l = 1;l = 1;

While[d > p ∗ q/(2(p+ q − 1)g0 ∗ k0),While[d > p ∗ q/(2(p+ q − 1)g0 ∗ k0),While[d > p ∗ q/(2(p+ q − 1)g0 ∗ k0),

p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];p = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];
q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}];
While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];While[q == p, q = RandomPrime[{2∧(nbits/2− 1), 2∧(nbits/2)− 1}]];
n = p ∗ q;n = p ∗ q;n = p ∗ q;
lambdan = LCM[(p− 1), (q − 1)];lambdan = LCM[(p− 1), (q − 1)];lambdan = LCM[(p− 1), (q − 1)];

d = RandomPrime[Floor[n∧(1/4)/l]];d = RandomPrime[Floor[n∧(1/4)/l]];d = RandomPrime[Floor[n∧(1/4)/l]];

While[GCD[d, lambdan] 6= 1, d = RandomPrime[Floor[n∧(1/4)/l]];];While[GCD[d, lambdan] 6= 1, d = RandomPrime[Floor[n∧(1/4)/l]];];While[GCD[d, lambdan] 6= 1, d = RandomPrime[Floor[n∧(1/4)/l]];];

e = PowerMod[d,−1, lambdan];e = PowerMod[d,−1, lambdan];e = PowerMod[d,−1, lambdan];

k = (e ∗ d− 1)/lambdan;k = (e ∗ d− 1)/lambdan;k = (e ∗ d− 1)/lambdan;

g = GCD[p− 1, q − 1];g = GCD[p− 1, q − 1];g = GCD[p− 1, q − 1];

g0 = g/GCD[g, k];g0 = g/GCD[g, k];g0 = g/GCD[g, k];

k0 = k/GCD[k, g];k0 = k/GCD[k, g];k0 = k/GCD[k, g];

l++;l++;l++;

];];];

rwi = Append[rwi, {nbits,Timing[rwi = Append[rwi, {nbits,Timing[rwi = Append[rwi, {nbits,Timing[

conv = Convergents[e/n];conv = Convergents[e/n];conv = Convergents[e/n];

candidates = Table[Floor[e/conv[[i]]], {i, 2,Length[conv]}];candidates = Table[Floor[e/conv[[i]]], {i, 2,Length[conv]}];candidates = Table[Floor[e/conv[[i]]], {i, 2,Length[conv]}];
m = 0;m = 0;m = 0;

64

fact = 0;fact = 0;fact = 0;

While[fact == 0,While[fact == 0,While[fact == 0,

j = 1;j = 1;j = 1;

While[j<=Length[candidates]&&fact == 0,While[j<=Length[candidates]&&fact == 0,While[j<=Length[candidates]&&fact == 0,

fitemp = candidates[[j]] +m;fitemp = candidates[[j]] +m;fitemp = candidates[[j]] +m;

primos = Solve[x∧2− (n− fitemp + 1)x+ n==0, x];primos = Solve[x∧2− (n− fitemp + 1)x+ n==0, x];primos = Solve[x∧2− (n− fitemp + 1)x+ n==0, x];

ptemp = x/.primos[[1]];ptemp = x/.primos[[1]];ptemp = x/.primos[[1]];

qtemp = x/.primos[[2]];qtemp = x/.primos[[2]];qtemp = x/.primos[[2]];

If[PrimeQ[ptemp]&&PrimeQ[qtemp], fact = 1, j++];If[PrimeQ[ptemp]&&PrimeQ[qtemp], fact = 1, j++];If[PrimeQ[ptemp]&&PrimeQ[qtemp], fact = 1, j++];

];];];

m++;m++;m++;

];];];

][[1]]}];][[1]]}];][[1]]}];
i++;i++;i++;

]]]

rwirwirwi

65

